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Abstract—The most important thing of using model checking
technology to verify production knowledge base is to build
system model from rule set. It is a fundamental but time-
consuming job. This paper presents an efficient formal method
to verify production knowledge base. Two main contributions
of this paper are as follows. Firstly, we propose a dynamic
modeling method to build system model of knowledge base, this
method utilizes the dynamic procedural nature of production
rule to build system model, and it improves the modeling
efficiency significantly; Secondly, a conditional transition sys-
tem based on the standard transition system is given to
represent system model, our conditional transition system
contains the whole information about the actual state transition
process, which solves the information loss problem of the static
transition system built by static modeling method and improves
the efficiency of error diagnosis.
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I. INTRODUCTION

Production knowledge base is widely used in various
artificial intelligent systems due to its advantages of simplic-
ity and clarity of representation. However, the construction
of knowledge base is a transformation process performed
by knowledge engineers who transform knowledge coming
from domain experts into the form of computer representa-
tion, which introduces many quality effecting factors, such
as knowledge errors and inputting errors result from human
negligence, different kinds of hidden errors brought in by
inaccurate and unilateral comprehension of the intention
of domain experts, etc. These factors are the fundamental
reason why there exists inconsistent, incomplete and even
wrong knowledge[1] in various of production knowledge
base. With the extensive application and the continuous
expansion of the scale of knowledge base, knowledge errors
are becoming complicated and diversified, and have al-
ready become a significant factors influencing the operating
efficiency of different kinds of intelligent systems. Thus,
correctness verification has become an absolutely necessary
step on the building of knowledge base.

With the rapid development of production knowledge
base system, there appears many kinds of verification tech-
nologies , such as method based on decision table[2],
directed graph[3], Petri net[4–6], knowledge network[7],
DNA operation[8] and adaptive reasoning[9] and so on.

Though these methods are capable of finding different kind
of knowledge errors to a different extent, the verification
process of most of which is limited to the rule set itself.
In fact, the dynamic dependent relationship of rules during
running period of knowledge base is far more complicated
than the static dependent relationship of rule set itself. The
exposure of some hidden errors only happens during the
running period of knowledge base system, and test[10, 11]
is a common method to deal with this problem. However, test
has a low efficiency, and its ability relies on the experience
of testing personnel to a great extent. In addition, test covers
just a small part of running paths of the system.

Compared with the methods mentioned above, model
checking[12] is a general verification technique, it needs
neither high degree interaction with users nor sophisticated
expert knowledge, and is able to answer whether a system
model satisfies the given property or not rapidly and au-
tomatically. A few methods[13–15] using model checking
technology to debug and verify inconsistency and circula-
tion of production knowledge base have been proposed by
researchers. However, the modeling methods have been put
forward by these model checking technologies are a kind
of Static Modeling Method(SMM), the reason is that the
dynamic procedural nature of production rules is ignored in
the modeling process of SMM.

SMM contains two main steps. The first one is the
generation of system states according to rule set, the second
one is the generation of transition relations, which has to
traverse the whole rule set for any two states. Although
SMM is clear and easy to understand, it has two limitations:
1) The dynamic procedural nature that the state transition
is triggered by rule condition and the transition target is
determined by rule action is neglected, the immediate con-
sequence is the modeling efficiency is low; 2) The transition
relation is a subset of the Cartesian Product of state set.
Though verification can be achieved on this standard transi-
tion system built by SMM, the final goal of the verification
of production knowledge base is not to obtain error path
given by model checker, but to find error location, i.e., to
find a certain error is triggered by which rule condition
and caused by the execution of which rule action. System
model built by SMM, which we call it as Static Transition
System(STS), does not contain these important information



which can be used for error diagnosis. Thus, it has to traverse
rule set repeatedly to find error location, which will lead to
a high time overhead.

A formal method using model checking technology to
verify production knowledge base is proposed in this paper
based on the studies on existing verification methods. This
paper is structured as follows. First, we introduce the dy-
namic conditional transition caused by rule and the definition
of Conditional Transition System(CTS) which contains the
state transition information triggered by rule condition. Then
Dynamic Modeling Method(DMM) is proposed to build
CTS, the DMM algorithm and an example are given to
specify the modeling process. Finally,we have discussed how
to describe properties of the system by the use of LTL
formula.

II. MODELING

One of the most important and complicated step of model
checking is the building of system model, i.e., a Transition
System. SMM does not take the inducement and process of
state transition under consideration, while it just investigates
the relationship between state and state. As a matter of fact,
state transition induced by production knowledge base is a
dynamic changing process triggered by rule condition.

A. Conditional Transition

Definition1. Expression s
r.con:r.act−−−−−−−→ s′ denotes the

conditional transition process triggered by rule condition,
r is rule labeling, r.con and r.act denote the condition and
action of rule r respectively.

The semantic of conditional transition is as follows. When
system arrive at state s, rule matching will take place
according to current variable values of state s, if condition
of rule r, namely r.con , is satisfied at state s, r.act will
be triggered and perform calculation on variables of state s,
variable values which have been changed form a new state s′

, s′ can be the same as state s. This is because the operation
performed by r.act does not change the variable values on
state s. Conclusively, if state s satisfies r.con , state s′ is
arrived by performing r.act on state s.

The influence of procedural rule on state transition can be
described intuitively by the using of conditional transition.
As to declarative rule, we can treat the rule conclusion as a
variable assignment process, i.e., treat a declarative rule as
a procedural rule.

B. Building CTS

Let there are m variables involved in production knowl-
edge base, suppose V = v1, v2, ..., vm is the set of these
variables, where m > 0 , and every variable has a determi-
nate data type, such as Boolean, Integer and String, etc. Each
data type has a data domain, let D(v) denotes the domain
of v, where v ∈ V .

Definition 2. Let C(V ) is a finite set of Boolean con-
ditions over variable set V . Here Boolean condition is a
proposition logic formula having the form v ∈ d , where
v = (v1, v2, ..., vn) is a n-tuple, where vi ∈ V , 1 ≤ i ≤ n
,1 ≤ n ≤ m , and for every 1 ≤ j ≤ n , if i 6= j holds, then
D = D(v1)×D(v2)× ...×D(vn) holds. denotes the data
domain of v .

For example, let Boolean proposition logic formula
(v1, v2) ∈ (x, y) ∈ IN2 | y − x ≤ 2 be denoted as v2−v1 ≤
2 for short, then (v1 > 2) ∧ (v2 − v1 ≤ 2) ∧ (v3 = true) is
a valid proposition condition, where v1 and v2 are Integer,
v3 is Boolean.

Definition 3. Suppose E(V ) is a finite set over variable
set V , the elements of E(V ) is composed of all possible
combinations of variable values.

Definition 4. Let fact : E(V ) → E(V ) is an action
function defined by V , and F denote the finite set composed
by all action functions.

A rule in knowledge base can be regarded as a 2-tuple
r : (con, act) , where r is labeling of the rule, con represents
rule condition, and act denotes action or conclusion of a
rule. According to definition 1, con is a Boolean condition
defined by V , thus con ∈ C(V ) holds; According to
definition 2, act is a action function defined by V , i.e.,
act ∈ F holds. Suppose R is a finite set defined by all
the rules of knowledge base, then R ⊆ C(V )× F holds.

As the system model built by SMM does not contains
information about the cause of state transition, which will
lead to a high cost to locate error. Thus, a complete transi-
tion system built from knowledge base should include this
important information. The definition of CTS is as follows.

Definition 5. Let Conditional Transition System(CTS) de-
fined over variable set V is a 6-tuple (S,A, ↪→, S0, AP, L),
where
• S is a set of states, S = E(V ),
• A is a set of actions, A ⊆ F ,
• ↪→ is a set of transitions, ↪→⊆ S × C(V )× F × S,
• S0 is a set of initial states, S0 ⊆ S,
• AP is a set of atomic propositions, AP = C(V ),
• L : S → 2AP is a labeling function.
Rule set of knowledge base can be converted into CTS

naturally according to definition 1 and definition 5. The basic
idea is as follows. Starting from the initial states, if the
condition of a rule is triggered at some states, rule action
will be performed on the state to get the target state. If
the target state does not belong to S, then put it into S.
Whether the target state belongs to S or not, the transition
relation between the source state and target state will be
added into ↪→. A whole CTS will be constructed gradually
via the iterative extension process above.

The following is the DMM algorithm used for building
CTS, in which S0 is the set of initial states, O is a set
of states having been traversed, N is a set of states being
added into CTS in a traversal, A is the set of actions, ↪→ is



the set of transitions.

DMM Algorithm
1) Initialization Operation, add the initial states set S0 to

S and the new states set N separately, both action set
A and conditional transition set ↪→ are empty.

2) Get a state s from new state set N , then remove this
element from N .

3) Get a rule r that has not been match with state s
from rule set R, then perform the matching operation
between s and r, if s does not satisfy r.con, turn step
7.

4) If r.act(s) is already in the state set S, turn step 6,
else do the next step.

5) Add state s to both the states set S and the new states
set N .

6) Add (s, r.con, r.act, r.act(s)) to the conditional tran-
sition set ↪→, and r.act to the action set A.

7) If there still exists rules that have not been matched
with state s, turn step 3.

8) If the new states set N is empty, return states set S,
conditional transition set ↪→ and action set A, else
jump to step 2.

In this modeling method, system model is generated
mainly from the dynamic extension of state set and transition
set. The dynamic characteristic of DMM is that the state
transition only happens when special conditions are satis-
fied, and the determination of the transition target, namely
the process of the generation of new states, is dependent
dynamically on action which is triggered by a rule condition.

C. An example of CTS

In this section, we take knowledge base of ferryman
problem as an example to analyze the modeling process of
CTS. Ferryman has to ferry wolf, goat and cabbage from
the initial riverbank to the target riverbank, he can carry
only one object among wolf, goat and cabbage every time,
or carry nothing. Wolf and goat or goat and cabbage should
not be at the same riverbank without the ferryman. There are
8 rules in the production knowledge base used for solving
this problem. Where f, w, g and c denotes ferryman, wolf,
goat and cabbage respectively, the value of f, w, g and c
can be 0 or 1, value 0 denotes these four objects are at the
initial riverbank, and value 1 the target riverbank. The rule
set of this knowledge base is as follows.
r1 : IF (f = 0) THEN (f + 1)
r2 : IF (f = 1) THEN (f − 1)
r3 : IF (f = 0, w = 0) THEN (f + 1, w + 1)
r4 : IF (f = 1, w = 1) THEN (f − 1, w − 1)
r5 : IF (f = 0, g = 0) THEN (f + 1, g + 1)
r6 : IF (f = 1, g = 1) THEN (f − 1, g − 1)
r7 : IF (f = 0, c = 0) THEN (f + 1, c+ 1)
r8 : IF (f = 1, c = 1) THEN (f − 1, c− 1)

Figure 1. CTS of ferryman problem

In this system, initial states set includes only one state
(f = 0, w = 0, g = 0, c = 0) , denoted as (f0, w0, g0, c0)
for short. In the first iteration, four rules r1.con, r3.con,
r5.con and r7.con are triggered on initial state, A new
state (f1, w0, g0, c0) can be achieved by performing r1.act
on the initial state, in a similar way, we can get new
states (f1, w1, g0, c0) , (f1, w0, g1, c0) and (f1, w0, g0, c1)
via r3.act, r5.act and r7.act respectively. In this iteration,
four conditional transition relations

(f0, w0, g0, c0)× r1.con× r1.act× (f1, w0, g0, c0),
(f0, w0, g0, c0)× r3.con× r3.act× (f1, w1, g0, c0),
(f0, w0, g0, c0)× r5.con× r5.act× (f1, w0, g1, c0),
(f0, w0, g0, c0)× r7.con× r7.act× (f1, w0, g0, c1),

are added into the transition set ↪→. Repeat this process until
there is no new state can be arrived at a certain traversal.
Fig. 1 shows the complete CTS of this production knowledge
system.

D. Property description

There are two necessary conditions which are needed to
verify properties we care about. The first one is a transition
system, another one is properties described by LTL or CTL
formula. We can verify whether a transition system satisfies
the given property or not by using NuSMV model checker.
In this section, we mainly discuss the typical method of uti-
lizing LTL to describe related properties. Ferryman problem
is still taken as an example here.

1) Security property. Wolf and goat or goat and cabbage
should not be at the same riverbank is a security property.
The LTL formula

φ1 = G(w = g ∨ g = c)→ g = f
describes this property, where G is a temporal conjunction,



denotes all the future states. Put CTS and φ1 into
NuSMV, we can obtain seven states (f1, w0, g0, c0),
(f1, w1, g0, c0), (f1, w0, g0, c1), (f0, w1, g0, c0),
(f0, w0, g0, c1), (f0, w1, g1, c0) and (f0, w0, g1, c1),
which violate φ1.

2) Liveness property. The existence of solution is a
liveness property, i.e., there exists a transition path starting
from initial state to target state, and this path has to satisfy
security property. Target state can be described as LTL
formula φ2 = f ∧ g ∧ w ∧ c. Then existence of solution
is to find a path that satisfies formula φ1tφ2. Thus, we can
verify whether this CTS satisfies formula φ3 = ¬(φ1tφ2) or
not, i.e., there is no path satisfies formula φ1tφ2 . NuSMV
will verify that this CTS does not satisfy φ3 .

3) Furthermore, we can verify whether there exists a
solution of which the number of round trip is less than
three. Let φ4 = G(g → Gg), Where φ4 means once goat
arrives at the target riverbank, it will keep the state forever.
This problem can be solved by find a path satisfies formula
φ5 = (φ1 t φ2) ∧ φ4. NuSMV can verify ¬φ5 is true, i.e.,
there is no such solution.

III. PERFORMANCE ANALYSIS

A. Computing cost of modeling

In order to build a transition system, SMM needs to
generate states set of knowledge base at first, then it
generates transition relation by matching rule set with all
combinations of any two states. Thus the time complexity
of SMM is O(N2×K) , while the time complexity of DMM
is O(N ×K) , because every state in CTS matches rule set
only one time in the building process of DMM, where N is
state scale, K is rule scale of knowledge base.

B. Computing cost of error diagnosis

Suppose π is the error path given by model checker, and
π is a finite state sequence s0, s1, ..., sn, where n ≥ 0,
|π| = n . For STS built by SMM, the computation of
rule inference path for π has to traverse the rule set with
n transitions, such as s0 × s1, s1 × s2, ..., sn−1 × sn, the
computing cost is O(|π| ×K); As to CTS, the computing
cost is O(|π|) because we can locate error directly from
conditional transition relations.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

An experiment was carried out to prove the correctness
of performance analysis given in section 3. Experimental
data comes from the Knowledge base of Social Insurance
Audit Project, which is supported by National Natural
Science Foundation of China(NSFC). The system models
generated in this experiment and the experimental data are
stored in database, and the database type is DB2 V9.1, the
running environment is IBM x3950 server. SMM and DMM
implemented on Netbeans 6.7 IDE to build transition system

Table I
MODELING PERFORMANCE OF SMM AND DMM

Rule
scale

Algo-
rithm

State
scale

Transiti-
on scale

Compari-
son(103)

Time
cost(s)

13 SMM 33 85 14.15 4.193
22 SMM 81 299 144.34 31.097
30 SMM 162 874 787.32 154.927
44 SMM 382 3323 6420.65 1196.200
51 SMM 693 9355 24492.69 4505.320
13 DMM 33 85 2.81 1.736
22 DMM 76 293 22.27 8.191
30 DMM 152 839 127.53 34.609
44 DMM 348 3127 1088.20 283.163
51 DMM 613 8628 5289.06 1064.375

Table II
ERROR LOCATING PERFORMANCE OF STS AND CTS

Rule
scale

TS
Type

|π| =
10(ms)

|π| =
20(ms)

|π| =
30(ms)

|π| =
40(ms)

|π| =
50(ms)

13 STS 23.15 46.31 69.46 92.62 115.78
22 STS 39.18 78.37 117.56 156.75 195.93
30 STS 53.43 106.87 160.31 213.75 267.18
44 STS 78.37 156.75 235.12 313.50 391.87
51 STS 90.84 181.68 272.53 363.37 454.21
13 CTS 1.77 3.5578 5.336 7.11 8.89
22 CTS 1.78 3.56 5.350 7.13 8.91
30 CTS 1.78 1.79 3.598 5.39 7.19
44 CTS 1.74 3.49 5.235 6.98 8.72
51 CTS 1.75 3.51 5.279 7.03 8.79

respectively under the same conditions. Table I shows the
results of this experiment.

According to data in table I, the modeling efficiency of
DMM is obviously higher than SMM. Moreover, the scale of
CTS built by DMM is slightly less than STS built by SMM,
the reason is that CTS is extended dynamically by DMM
on the basis of states it can reach via the rule set, which
ensures there is no redundant state in CTS. Furthermore,
the error diagnosis efficiency has been tested on transition
systems constructed by SMM and DMM, table II shows the
experimental results. It is clearly that the time cost of error
location on STS is directly proportional to the scale of rule
set and the length of error path, while this time cost on CTS
is only related to the length of error path.

V. CONCLUSION

In this paper, we have proposed a formal method to verify
production knowledge base by the use of model checking
technology. In this method, DMM algorithm is given to
build CTS. Compared with SMM, DMM improves the
modeling efficiency, and CTS constructed by DMM includes
enough information about state transition, which solves the
information loss problem caused by SMM, and reduces the
computing cost of error diagnosis remarkably. However, the
building process of CTS does not take the influence of
inference control strategy into consideration. Further works
will study on the influence of inference control strategy in
the modeling process of production knowledge base.
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