
Model reduction using the orthogonality between
overapproximate slicing and abstract

Hongtao Huang∗, Shaobin Huang†, Zhiyuan Chen‡, Tao Zhang§
∗ College of Computer Science and Technology

Hargin Engineering University
Harbin, Heilongjiang, 150001, China

horntau@gmail.com, huangshaobin@hrbeu.edu.cn, chenzhiyuan@hrbeu.edu.cn, zhangtaohrbeu@163.com

Abstract—The orthogonality between static slicing and abstract
method has been used to furtherly reduce the state space in
model checking. However, static slicing can not always guarantee
a slicing model with an desired size. This paper proposes a new
approach which compute the over approximate slicing of an
abstract state graph other than a counterpart of a static slicing.
An overapproximate slicing is obtained by only considering the
data dependence relations between predicates, which will always
lead to a slice with an ideal size for verification. Though the
overapproximate slice only has a weak property resistance power,
it is an super set of the abstract state graph, which guarantees
if a property φ is satisfied on the overapproximate slice, then
the original specification is a model of φ. And if there appears
a spurious counterexample, then it increases the precision of
the overapproximate slice by refinement to keep the verification
cost as low as possible. We also provide sufficient proof for
the correctness of our method. The experimental result shows
that our method improves the scalability of model checking
remarkably and scales better to a larger system.

I. INTRODUCTION

Model checking[1] is a proven successful technique for
verifying hardware and software. However, the linear growth
of the number of variables and concurrent execution compo-
nents in software systems will lead to an exponential growth
of state space[2], this phenomenon is known as state space
explosion[3], [4] and is the main obstacle for applying model
checking to software systems of industrial size. Program
slicing[5] is a program analysis technique that has been proven
to be useful in a variety of software engineering applications,
such as program debugging, testing, understanding, mainte-
nance, metrics, and reuse. Recently, program slicing has also
been applied to state space reduction for model checking, and
it can eliminate the portion which is irrelevant to a slicing
criterion from a software specification by reachability analysis.
A lot of studies[6], [7], [8], [9] show that program slicing is
an effective technique for reducing the state space in model
checking.

Model checking works only for finite state systems, but most
software systems have infinitely many states due to unbounded
variables and unbounded control structures. Program slicing
is able to extract the portion which has a direct or indirect
relation with slicing criterian from a software specification,
and is essentially a method of rebuilding the state space
by removing the irrelevant variables. However, slicing can
not convert an infinite state space system to a finite one.

Abstract[10] is the most widely used state space reduction
method based on abstract interpretation[11], it is capable of
reducing a potentially infinite state space to the finite set of
valuations of a tuple of state predicates. Abstract rebuilds
a state space by the abstract variables which are abstracted
from concrete variables by data domain division and the
logical relations among of concrete variables. Abstract which
erects a bridge between a infinite state space and the finite
one is a reduction method that is independent of program
slicing. Therefore, program slicing and abstract can be utilized
simultaneously to reduce state space.

M. Dwyer indicates that the relative benefits of state-of-the-
art Java slicing techniques with state-of-the-art implementa-
tions of other well-known model reduction techniques such as
abstract, partial order reductions[12], symmetry reduction[13],
[14] , and demonstrates that reductions provided by slicing are
largely orthogonal to the effect of these other techniques[15].
For example, document[16], [17] perform slicing after data
abstract has been done to minimize the four-variable model.
H. Seok Hong introduces a notion of abstract slicing[18]
which is an approach to program slicing based on abstract
interpretation and symbolic model checking. Abstract slicing
extends static slicing with predicates and constraints by using
as the program model and abstract state graph, which is
obtained by applying predicate abstraction to a program. This
leads to a program slice that is more precise and smaller
than its static counterpart. Ingo Brückner presents a model
checking procedure for infinite state concurrent systems which
interleaves automatic abstraction refinement with slicing[19].
Abstract splits states according to new predicates obtained by
Craig interpolation, while slicing removes irrelevant states and
transitions from the abstraction. Abstract and slicing work
together and complement each other which makes model
checking scale to a larger system.

These methods reduces the state space significantly by the
help of the orthogonality between abstract and static slicing.
The orthogonality reduction method yield a smaller state space
than the one produced by abstract or slicing alone. However,
existing experience with static slicing for model reduction
is sometime inconclusive. Holzmann’s experience shows that
static slicing in Spin usually does not yield much reduction
for realistic Promela design models[20]. The main reason is
the compression capability of static slicing depends on not

only the slicing criterion but also the dependencies between
variables. That’s why it does not always guarantee a slicing
model with a desired size. Compared with static slicing,
overapproximate slicing is able to reduce the given model to
an ideal size. In this paper, we propose a model reduction
method that utilizes the orthogonality between abstract and
overapproximate slicing. Our orthogonality method reduces
the state space by computing the overapproximate slicing of an
abstract model, which achieves a further reduction of system
model and improves the scalability of model checking.

II. PRELIMINARIES

We use the abstract approach proposed by S. Graf[10] to
extract the abstract model from original specification. The
result of abstract is an abstract state graph.

Definition 1: (Abstract State Graph) Let A = (S, E , T , I)
be the abstract state graph of an original specification, where
• S is a abstract state set, S ⊆ b1 × b2 × · · · × bl, bi ∈ B

denotes a predicate ϕi of predicates set Ψ, |Ψ| = l, 1 ≤
i ≤ l,

• E is an event set, e ∈ E is a conditional assignment
g(Bg) 7→ A, where A = {b := exp | b ∈ Ba} is a
set of assignment expressions, Bg, Ba ∈ 2B , exp is an
evaluating expression defined over B, g(Bg) is a guard,
it is a boolean expression defined over Bg ,

• T ⊆ S × E × S is an abstract transition relation, for
all τ ∈ T , there exists a event e ∈ E and two states
s, s′ ∈ S such that the guard of e is true on state s and
the evaluating expressions of e yields s′, and

• I ⊆ S is a set of abstract initial states.
Abstract state graph is an directed graph of an abstraction of

the original specification, the node of an abstract state graph
denotes an abstract state, an arc denote an abstract transitions
between two abstract states, and the weight of an arc is an
event which causes the transition.

Definition 2: (Initial path) A path of A = (S, E , T , I) is an
alternating sequence of states and events: π = s0e0s1e1 · · · ,
where sieisi+1 ∈ T , π is a initial path if and only if s0 ∈ I.

A property φ is a predicate defined over B, φ characterizes
the correctness criterion of A, if there is no state that violates
φ is discovered in A, then A is correct, else we say A
does not satisfy φ. The model checker returns a finite error
path πe = s0e0s1e1 · · · sk−1ek−1sk in the case A does not
satisfy φ, where πe is an initial path and sk violates φ. πe
is concretizable if there exists a path in the original model
corresponding to πe.

Model checking is performed on the abstract model A, the
purpose of model checking is to prove A satisfies φ or to
find an concretizable error path as the proof that the original
specification is not a model of φ. We say A is a sound abstract
model of the original model if and only if there exists a
concretizable error path in A when the original specification is
not correct. The soundness of A has been proved in document
[19] and [21]. It has also been proven that static slicing is
an effective way in model reduction working together with
abstract[18], [19], we introduce overapproximate slicing which

is orthogonal to abstract to furtherly reduce the state space in
model checking.

III. OVERAPPROXIMATE SLICING OF ABSTRACT MODEL

Compared with static slicing, overapproximate slicing is
able to reduce the given model to an ideal size. In this
section, we reduce the abstract state graph by overapproximate
slicing. The selection of a slicing criterion is the key step for
computing a slicing of an abstract model.

Definition 3: (Slicing criterion) The slicing criterion of an
abstract state graph A = (S, E , T , I) is a tuple C(I,V), V
consists of the variables contained in the given property, let φ
be the property to be verified, then V = vars(φ).

We take the initial state set I of A as the program points,
and V is the variable set with respect to the given property. The
slicing of A is the part of A which affects I with respect to
V . The difference between overapproximate slicing and static
slicing is that the control dependence relations between vari-
bles are neglected when computing overapproximate slicing,
that’s why overapproximate slicing can always guarantee a
slicing model with a desired size. We give the definitions
of data dependence and control dependence relation between
variables as follows.

Definition 4: (Data dependence) b1 is data dependent on b2
if and only if b1 := exp belongs to A(e) and b2 ∈ vars(exp),
where e is an event, vars(exp) denotes the variable set of
exp.

Definition 5: (Control dependence) b1 is control dependent
on b2 if and only if b1 := exp belongs to A(e) and
b2 ∈ vars(G(e)), where e is an event, G(e) is the guard
of e, vars(G(e)) denotes the variable set of G(e).

Let As = (Ss, Es, Ts, Is) be the overapproximate slicing
of A = (S, E , T , I) with respect to C(I, vars(φ)), where φ
is the given property. As can be obtained by computing the
least fix point of S, namely, compute the part of A that has
an influence on the variable set of slicing criterion starting
from I iteratively, until it reaches the fixed point. There are
two key steps to compute As. We first compute the variable
set Bs which generates the abstract state space of As by
dependency analysis, then compute the event set Es which
generates Ts according to Bs. We compute Bs according to
the data dependence relation.

Let Bs0 = var(φ), then we compute the variables which
are data dependent on Bs0 , let D0 denote the set of these
variables, then we have

∀e ∈ E .∀a ∈ A(e).(tar(a) ∈ Bs0 ⇒ D0 = D0∪vars(exp(a)))

where A(e) denotes the assignment expression set of e, tar(a)
is the target variable of a, exp(a) is the evaluating expression
of a. If D0 is not empty, then we have

Bs1 = Bs0 ∪D0

Next, we compute D1 the same way as D0.

∀e ∈ E .∀a ∈ A(e).(tar(a) ∈ Bs1 ⇒ D1 = D1∪vars(exp(a)))

If D1 is not empty, then we have

Bs2 = Bs1 ∪D1

This computation will terminate at the ith iteration when
Di = ∅, where 0 ≤ i ≤ k, k = |B|. Knaster-Tarski
theorem[22], [23] guarantees this computation iterates at most
k times. Assume it terminates at the ith iteration, then we have
Bs = Bsi .
Es consists of events which are chosen from E according

to Bs. Events that satisfy e ∈ E ∧ a ∈ A(e) ∧ tar(a) ∈ Bs

are added to Es, where A is the assignment expression set
of e. For all e ∈ Es the evaluating expressions which satisfy
a ∈ A(e) ∧ tar(a) /∈ A(e) are removed from A(e). Then we
handle the guards of events of Es in order to eliminate the
effect of control dependence relations.

A method has been proposed by H. Wehrheim[24] to
compute Es, it neglects the whole guard of an event if the
guard contains variables not belonging to Bs. This method
may introduce too many additional behaviors into the overap-
proximate slicing because the method of handling the guard is
too rough. In this section, we proposed an optimized approach
to compute Es, the main idea of our method is to obtain a
more accurate slicing model by the means of preserving guard
conditions related to Bs. In our method, the guard of an event
is normalized to the disjunctive normal form. Let G(e) denote
the guard of an event e ∈ E , C(G(e)) denote the clause set
of G(e), c ∈ C(G(e)) is a conjunction of literals which is
composed of predicates or its negations. We first recalculate
the literals of c for all c ∈ C(G(e)) as follows.

L′(c) = {l | l ∈ L(c) ∧ vars(l) ⊆ Bs}

where L(c) denotes the literal set of c and L′(c) denotes the
new literal set of c. Let c′ be the new version of c, then c′

consists of the elements of L′(c).

c′ =
∧

l∈L′(c)

l

Let C ′(G(e)) = {c′ | c′ 6= ∅ ∧ c ∈ C(G(e))}, where
C ′(G(e)) is a new version of C(G(e)). Then we have

G′(e) =
∨

c∈C′(G(e))

c

where G′(e) is the new version of G(e). Finally, we replace
G(e) with a corresponding G′(e) for all e ∈ Es.
As, the overapptoximate slicing of A with regard to

(I, vars(φ)), can be induced by Bs and Es.
Definition 6: (Overapproximate slicing) As = (Ss, Es, Ts,
Is) is the overapproximate slicing of an abstract state graph
A = (S, E , T , I), where
• Ss ⊆ bs1 × bs2 × · · · × bsm , where Bs = {bs1 , bs2 , · · · ,
Bsm} ⊆ B, and bs1 , bs2 , · · · , Bsm has a compatible order
with b1, b2, · · · , bl,

• Es is a set of events,
• Ts ⊆ Ss × Es × Ss is a transition set,
• I = {s | s = PBs

(s′) ∧ s′ ∈ I}, where PBs
(s′) denote

the vector which is projected from s′ on Bs.

The main difference between overapproximate slicing and
static slicing is overapproximate slicing guarantees an ideal
reduction on an abstract state graph. We consider a simple
example to clarify how the overapproximate slicing works.

Example 1: Let A1 = (S1, E1, T1, I1) be an abstract state
graph of a system, B1 = {b1, b2, b3} be the variable set which
generates S1, and the initial value of each variable in B1 is 0,
the event set E1 is depicted in table I, the property of interest
is φ1 = ¬(b2 = 1 ∧ b3 = 1).

TABLE I
THE EVENTS OF E1

No. Event
e1 b1 = 0 7→ b1 = 1
e2 b2 = 1 ∧ b1 = 1 7→ b1 = 0
e3 b1 = 1 ∧ b2 = 0 7→ b2 = 1
e4 b3 = 1 ∧ b2 = 1 7→ b2 = 0
e5 b1 = 1 ∧ b2 = 1 ∧ b3 = 0 7→ b3 = 1
e6 b3 = 1 7→ b3 = 0

According to the conditions given in example 1, we can
draw a abstract state graph as shown in figure 1.

000

100 110 111 101

010 011 001

e1

e3

e2

e5

e2

e4

e6 e3

e6

e1

e4

e1

e6

e1

Fig. 1. Abstract state graph of example 1

We compute the overapproximate slicing of A1 with regard
to C({000}, {b2, b3}) as follows. First we compute Bs which
generates the slicing state space, because no variable in B1

is introduced by data dependence relation into {b2, b3}, so we
have Bs = {b2, b3}; Then we compute Es which generates the
transition set of the sliced abstract state graph, 4 transitions
e3, e4, e5, e6 are added to Es according to Bs. Next, the guards
of these events will be handle using the method given in this
section. Finally, we get Es as shown in table II.

TABLE II
THE EVENT SET OF Es

No. Event
e′3 b2 = 0 7→ b2 = 1
e′4 b3 = 1 ∧ b2 = 1 7→ b2 = 0
e′5 b2 = 1 ∧ b3 = 0 7→ b3 = 1
e′6 b3 = 1 7→ b3 = 0

The overapproximate slicing abstract state graph of A1

introduced by Bs and Es with regard to C({000}, {b2, b3})
is shown in figure 2.

The size of the overapproximate slicing of A1 is only a
half of A1, the reason is a variable b1 was ruled out. As a

00 10 11

01

e′3

e′5

e′4

e′6

e′6

Fig. 2. The overapproximate slicing abstract state graph of example 1

comparision, the slicing state space will be the same as A1 if
we use static slicing, the method of static slicing can be bound
in document[24]. However, overapproximate slicing reduces
the state space of an abstract state graph exponentially at the
cost of sacrificing the strong property resistance power. We
prove this property by stutter-equivalence paths between an
abstract state graph and its overaprroximate slicing.

Definition 7: (Stutter-equivalence path) Ai = (Si, Ei, Ti,
Ii) is a abstract state graph, where Si is generated by Bi,
πi is a path of Ai, i = 1, 2, let W ⊆ B1 ∩B2, B1 ∩B2 6= ∅,
π1 and π2 are W-stutter-equivalent, denoted π1 ,W π2, if πi
satisfies the following conditions.

π1|W = s
1
00

s
1
01
· · · s10n0︸ ︷︷ ︸

PW(s10i
) = s0

0 ≤ i ≤ n0

s
1
10

s
1
11
· · · s11n1︸ ︷︷ ︸

PW(s11i
) = s1

0 ≤ i ≤ n1

s
1
20

s
1
21
· · · s12n2︸ ︷︷ ︸

PW(s12i
) = s2

0 ≤ i ≤ n2

· · ·

π2|W = s
2
00

s
2
01
· · · s20m0︸ ︷︷ ︸

PW(s20i
) = s0

0 ≤ i ≤ m0

s
2
10

s
2
11
· · · s21m1︸ ︷︷ ︸

PW(s21i
) = s1

0 ≤ i ≤ m1

s
2
20

s
2
21
· · · s22m2︸ ︷︷ ︸

PW(s22i
) = s2

0 ≤ i ≤ m2

· · ·

Theorem 1: Let As = (Ss, Es, Ts, Is) be an overapproxi-
mate slicing of an abstract state graph A = (S, E , T , I) w.r.t.
C(I, vars(φ)), for all initial path π1 of A there exists an initial
path π2 of As such that π1 ,Bs π2.

Proof: Assume that π1 = s10e10s11e11s12e12 · · · , then
there exists a path π2 = s20 · · · of As such that s20 =
PBs

(s10). Let e1i be the ith event of π1, s2j be the jth state of
π2, and s2j = PBs

(s1i). If there does not exist a corresponding
version of e1i in Es, then the assignment expressions of e1i
do not change the value of variables in Bs, it follows that
PBs(s1(i+1)) = S2j ; If e1i has a corresponding version in Es,
let it be e2j , then s2j can transit to a state s2(j+1), because
G(e2j) only has relation to variables in Bs, so G(e1j) can
be satisfied on s1i implies G(e2j) is satisfied on s2j , besides,
e1i and e2j have the same effect on changing the values of
variables in Bs, and the values of variables in Bs on s1i are
the same as s2j , so we have the values of variables in Bs on
s1(i+1) are the same as s2(j+1), i.e., s2(j+1) = PBs

(s1(i+1)).
So we can conclude by induction that π1 ,Bs π2.
W-stutter-equivalence only guarantees if As satisfies φ then
A satisfies φ. That means if the model checker proves φ is
correct on As, then A is a model of φ, so the verification
is finished. But in the situation there is a counterexample on
As, we have to determine whether the counterexample can be
concretized or not[21]. If the counterexample is an spurious
one, then we refines the overapproximate slicing and continues

to verify the given property on the refined slicing, this is the
slicing-verification-refine iteration[24]. In example 1, we can
find a counterexample which can be concretized by performing
model checking on the overapproximate slicing of A1, which
saves a significant cost of verification than performing model
checking on A1. Algorithm 1 shows the main steps of our
overapproximate slicing computation.

Algorithm 1 OverapproximateSlicing(A, φ)
Require: An abstract state graph A and a given property φ
Ensure: Compute the overapproximate slicing of A w.r.t. C(I, vars(φ))
1. Bs := B0 := vars(φ);
2. flag := ture;
3. while flag = ture do
4. for every e ∈ E do
5. for for every assginment expression a ∈ A(e) do
6. if tar(a) ∈ B0 then
7. Bs := Bs ∪ vars(exp(e));
8. end if
9. end for

10. end for
11. if Bs = B0 then
12. flag := false;
13. else
14. B0 := Bs;
15. end if
16. end while
17. Es = ∅;
18. for every e ∈ E do
19. if ∃a ∈ A(e).(tar(a) ∈ Bs) then
20. generate an event e′, let A(e′) := {a|a ∈ A(e) ∧ tar(a) ∈ Bs};
21. if vars(G(e)) ⊆ Bs then
22. G(e′) := G(e);
23. else
24. G(e′) := G′(G(e′)); {G′(G(e′)) is a new version of G(e′)};
25. end if
26. end if
27. Es := Es ∪ {e′};
28. end for
29. construct an overapproximate slicing induced by Bs and Es;

IV. IMPLEMENTATION AND EXPERIMENTATION

We have implemented a prototype model checking proce-
dure to evaluate the feasibility and efficiency of our method.
This prototype model checker consists of a specification
parser, a static slicing procedure, a overapproximate slic-
ing procedure, a SAT prover for satisfiability checking. The
goal of our experimentation is to compare the efficiency
of overapproximate slicing and static slicing when they are
orthogonal to abstract. The experiment was carried out on a
PC with a Pentium(R) Dual-Core E5200 processor, a 2 Gbyte
memory and a Ubuntu 10.10 Linux OS. 7 different safety
properties were verified on a medical insurance settlement
specification. Table III summarizes the experimental results
of 7 different safety properties used in our experiment. There
are five columns in table III, where PN is property number,
Vars is the number of variables contained in a property. We
compare the results of Overapptoximate Slicing orthogonal to
Abstraction (OSA) algorithm with the results of Static Slicing
orthogonal to Abstraction (SSA) algorithm on the total state
number, time and result in different verifications.

TABLE III
EXPERIMENTAL RESULTS

PNo Vars StateNum Time(ms) Result
SSA OSA SSA OSA SSA OSA

1 2 32 16 193 127 Satisfied
2 4 128 128 359 377 Satisfied
3 4 186 105 433 314 Counterexample
4 8 8192 1024 14528 2339 Satisfied
5 8 5119 875 11506 1973 Counterexample
6 10 16384 4096 25120 6982 Satisfied
7 10 7167 2744 16093 6140 Counterexample

The experiment results confirmed the correctness and the
evident improvement of the reduction capability of OSA.
These 7 properties include a variety of different situations,
which can help us observe the performance of OSA from
different perspectives. The results of these properties are sorted
in an ascending order on the variable number, and property
1, 2, 4, 6 are satisfied by our testing model, while property
3, 5, 7 are negative. OSA gives the same verification result
as SSA as we expect. We noticed the performance of OSA
is roughly the same as SSA on property 2, this is caused
by the weak property resistance power of overapproximate
slicing, which will result in slicing refinement to eliminate
spurious counterexamples. Overapproximate slicing assume
that the model checking can be finished on the the slicing
model which is the super set of the original model but has
an ideal size. If the over approximate slicing is too rough
to prove the given property, then it increases the precision
of the slicing via refinement, and the upper bound of slicing
refinement is the static slicing, this is why the state number of
OSA is no more than the number of SSA. But OSA may take
more time than SSA when the slicing models on which they
finished verification respectively have the same size. Because
if the overapproximate slicing is too rough to prove a given
property, OSA has to refine the slicing model, then restarts
the model checking process on the refined overapproximate
slicing (property 2). Conclusively, the slicing abstract state
space constructed by our method grows slower than the one
constructed by static slicing, and OSA improves the state space
reduction ability of SSA when they are orthogonal to abstract.

V. CONCLUSION

This paper proposes a state space reduction method that
utilizes overapproximate slicing technique to reduce the ab-
stract state graph. We described the notion of overapproximate
slicing to instead of static slicing which is orthogonal to
abstract method. We compute a overapproximate slicing of
the abstract state graph by neglecting the control dependence
relations of the guard, which guarantees a significant reduction
of the abstract model. The experimental result shows that our
method scales much better to large systems compared with
static slicing.

ACKNOWLEDGMENT

This work is sponsored by the National Natural Science
Foundation of China under grant number 60873038 and the

National Key Project of Scientific and Technical Supporting
Programs under grant number 2009BAH42B02.

REFERENCES

[1] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. The MIT
Press, 1999.

[2] E. M. Clarke, E. A. Emerson, and J. Sifakis, “Model checking: algorith-
mic verification and debugging,” Commun. ACM, vol. 52, no. 11, pp.
74–84, 2009.

[3] F. J. Lin, P. M. Chu, and M. T. Liu, “Protocol verification using
reachability analysis: the state space explosion problem and relief strate-
gies,” in Proceedings of the ACM workshop on Frontiers in computer
communications technology, 1987, pp. 126–135.

[4] A. Valmari, “The state explosion problem,” Lectures on Petri Nets:
advances in Petri Nets. Basic models, pp. 4–29, 1998.

[5] M. Weiser, “Program slicing,” in Proceedings of the 5th international
conference on Software engineering, 1981, pp. 439–449.

[6] E. Clarke, M. Fujita, S. Rajan, T. Reps, S. Shankar, and T. Teitelbaum,
“Program slicing of hardware description languages,” Correct Hardware
Design and Verification Methods, pp. 72–72, 1999.

[7] M. B. Dwyer and J. Hatcliff, “Slicing software for model construction,”
Proceedings of Partial Evaluation and Semantic-Based Program Manip-
ulation (PEPM’99), pp. 105–118, 1999.

[8] I. Brückner and H. Wehrheim, “Slicing an integrated formal method for
verification,” Formal Methods and Software Engineering, pp. 360–374,
2005.

[9] N. Yatapanage, K. Winter, and S. Zafar, “Slicing behavior tree models
for verification,” Theoretical Computer Science, pp. 125–139, 2010.

[10] S. Graf and H. Saı̈di, “Construction of abstract state graphs with PVS,”
in Computer Aided Verification, 1997, pp. 72–83.

[11] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in Proceedings of the 4th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, 1977, pp. 238–252.

[12] P. Godefroid, “Using partial orders to improve automatic verification
methods,” in Computer-Aided Verification, 1991, pp. 176–185.

[13] E. A. Emerson and A. P. Sistla, “Symmetry and model checking,” Formal
methods in system design, vol. 9, no. 1, pp. 105–131, 1996.

[14] A. Miller, A. Donaldson, and M. Calder, “Symmetry in temporal logic
model checking,” ACM Computing Surveys (CSUR), vol. 38, no. 3, pp.
8–es, 2006.

[15] M. Dwyer, J. Hatcliff, M. Hoosier, V. Ranganath, and T. Wallen-
tine, “Evaluating the effectiveness of slicing for model reduction of
concurrent object-oriented programs,” Tools and Algorithms for the
Construction and Analysis of Systems, pp. 73–89, 2006.

[16] R. Bharadwaj and C. L. Heitmeyer, “Model checking complete require-
ments specifications using abstraction,” Automated Software Engineer-
ing, vol. 6, no. 1, pp. 37–68, 1999.

[17] C. Heitmeyer, J. K. Jr, B. Labaw, M. Archer, and R. Bharadwaj,
“Using abstraction and model checking to detect safety violations in
requirements specifications,” Software Engineering, IEEE Transactions
on, vol. 24, no. 11, pp. 927–948, 2002.

[18] H. S. Hong, I. Lee, and O. Sokolsky, “Abstract slicing: A new approach
to program slicing based on abstract interpretation and model checking,”
in Proceedings of the Fifth IEEE International Workshop on Source Code
Analysis and Manipulation, 2005, pp. 25–34.

[19] I. Brückner, K. Drger, B. Finkbeiner, and H. Wehrheim, “Slicing
abstractions,” Fundam. Inf., vol. 89, no. 4, pp. 369–392, 2009.

[20] G. J. Holzmann, Personal communication, Oct. 2005.
[21] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-

guided abstraction refinement for symbolic model checking,” J. ACM,
vol. 50, no. 5, pp. 752–794, 2003.

[22] B. Knaster, “Un thorme sur les fonctions d’ensembles,” Pacific Journal
of Mathematics, no. 6, pp. 133–134, 1928.

[23] A. Tarski, “A lattice-theoretical fixed point theorem and its applications,”
Pacific J. Math, no. 5, pp. 285–309, 1955.

[24] H. Wehrheim, “Incremental slicing,” Formal Methods and Software
Engineering, pp. 514–528, 2006.

