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Abstract CEGAR (Counterexample-guided abstraction refinement)-based slicing is one of the most important techniques
in reducing the state space in model checking. However, CEGAR-based slicing repeatedly explores the state space handled
previously in case a spurious counterexample is found. Inspired by lazy abstraction, we introduce the concept of lazy slicing
which eliminates this repeated computation. Lazy slicing is done on-the-fly, and only up to the precision necessary to rule out
spurious counterexamples. It identifies a spurious counterexample by concretizing a path fragment other than the full path,
which reduces the cost of spurious counterexample decision significantly. Besides, we present an improved over-approximate
slicing method to build a more precise slice model. We also provide the proof of the correctness and the termination of
lazy slicing, and implement a prototype model checker to verify safety property. Experimental results show that lazy slicing
scales to larger systems than CEGAR-based slicing methods.
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1 Introduction

With the rapid development of model checking
technology[1] over the past two decades, various model
checkers have been widely used in industry to automati-
cally analyze finite state concurrent systems. However,
the linear growth of the number of variables and con-
current execution components in software systems will
lead to an exponential growth of state space, which
is the major challenge in software model checking[2].
Program slicing[3] is one of the effective methods to
alleviate state space explosion, and can eliminate the
irrelevant portion of a software specification by reach-
ability analysis. This technology has been successfully
used to reduce the state space in model checking[4-7].

The next generation model checking framework pro-
posed in [8], is capable of reducing the concurrent
object-oriented source code significantly with the help
of its Java program slicing component. [8] also in-
dicates that slicing concurrent object-oriented source
code provides significant reductions that are orthogo-
nal to a number of other well-known model reduction
techniques (such as partial order reduction[9] and sym-
metry reduction[10-11]), and that slicing should always

be applied due to its automation and low computational
costs. As a matter of fact, there have been lots of stu-
dies using the orthogonality between slicing and other
reduction techniques to enhance the power of slicing.
For example, [12] and [13] make slicing work together
with data abstract to minimize the four-variable model.
Slicing is also used in [14] and [15] to remove irrelevant
states and transitions from the abstract model, which
makes slicing and predicate abstract complement each
other effectively.

Conventional wisdom holds that static program slic-
ing can be an effective model reduction technique for
software model checking[8]. However, existing expe-
rience with slicing for model reduction is sometimes
inconclusive. Holzmann’s experience shows that slicing
in Spin usually does not yield much reduction for realis-
tic Promela design models[16]. The main reason is that
the compression capability of static slicing depends on
not only the slicing criterion but also the dependency
relationship between variables. That is why it does not
always guarantee a slice model with a desired size.

In order to overcome this obstacle, incremental
slicing[18], a typical CEGAR (counterexample-guided
abstraction refinement)-based slicing method[17], first
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constructs an over-approximate slice model of original
software specification, then continuously increases the
precision of the over-approximate slice to meet the veri-
fication demand until the desired property is proved
correct or a real counterexample is discovered. Com-
pared with static slicing, incremental slicing scales to a
remarkably larger state space. A variant of incremental
slicing known as stepwise slicing was also proposed by
[19], and the difference is that stepwise slicing verifies
a given property on the dependence graph of program
behavior model rather than a state machine. In addi-
tion, a bounded slicing algorithm decreases the itera-
tion number of refinement iteration, thus reduces the
appearance probability of spurious counterexamples in
stepwise slicing. But on the other hand, stepwise slic-
ing cannot be finished automatically, because it needs
manual intervention to remove irrelevant variables in
each refinement iteration.

Both incremental slicing and stepwise slicing are pro-
posed in order to perform the verification at a minimum
cost. However, both of these two methods restart a
verification on the entire refined over-approximate slice,
and the work done on earlier slices is completely ig-
nored. This leads to the unnecessary repeated compu-
tation.

We believe that the slicing-verification-refinement
iteration can be performed on one slice with different
precisions by local refinement, which avoids repetitive
verifications by preserving previous achievements. Our
method, namely lazy slicing, which is inspired by the
idea of lazy abstraction[20], can scale to large systems
with an additional optimization on CEGAR-based slic-
ing. It refines and then verifies only the unexplored
portion of the slice if a spurious counterexample is iden-
tified, which improves the performance significantly by
avoiding repetitively verifying the state space that has
been proven correct. Besides, lazy slicing produces
paths with ascending precisions, which makes it possi-
ble to determine whether a counterexample is spurious
or not by concretizing a path fragment other than the
full path. Therefore, the efficiency of spurious coun-
terexample decision can be improved significantly. Fi-
nally, we give an improved over-approximate slicing
method, which is able to build a more precise slice than
incremental slicing does[18].

This paper considers a simplified software model in
order to illustrate our state space exploration method.
We assume that all system models consist of finite
domain variables, since variables with infinite do-
main can be converted to variables with finite do-
main with the help of data abstraction[12-13], predi-
cate abstraction[21-24], etc. Because the result of the
parallel composition of multiple Kripke models is still
a single Kripke model[25], we do not consider it in this

paper. Besides, the discussion on state space explo-
ration method in this paper is limited to reachability.
We hope to apply our method to verify LTL (Linear
Temporal Logic) properties by converting LTL model
checking problem to a reachability problem, this will
be done in future work.

This paper is organized as follows. Section 2
describes four key steps of lazy slicing, i.e., over-
approximate slicing, spurious counterexample decision,
local slice refinement and exploration. We then demon-
strate how lazy slicing works with a full example of
mutual exclusion algorithm. Sections 3 to 6 present
the definitions, calculation processes and features of the
four key steps in detail respectively. Section 7 presents
an improved over-approximate slicing method which
can produce a more precise slice than the method given
in Section 3. Section 8 proves the correctness, termi-
nation and analyzes the savings of lazy slicing. Section
9 reports the experimental results which are consistent
with the analysis in Section 8. Finally, Section 10 con-
cludes the paper.

2 Main Steps and An Example

The repeated computation of CEGAR-based slicing
can be eliminated by Lazy slicing. The main reason is
lazy slicing refines and verifies only the remaining part
of the state space, which saves the cost of unnecessary
exploration on state space that is known to be correct.
In this section, we will describe the main steps of lazy
slicing with an example.

Intuitively, lazy slicing works as follows. In the re-
finement step, the dead end state suggests which varia-
ble should be added to refine the slice. (The dead end
state is a state on the spurious counterexample, which
is able to transit to its successor on the spurious coun-
terexample, but this transition cannot happen on the
original model.) Instead of building and verifying on an
entire new slice, we refine only the state space which has
not been verified, then restart a verification on the re-
fined local slice with a higher precision. It means the
desired property can be validated without revisiting the
state space handled previously. Lazy slicing repeats the
work until the desired property is established or a coun-
terexample is found. If it terminates with outcome that
the model satisfies the desired property, the proof is a
slice whose precision changes in different parts; while if
it terminates with the outcome that the model violates
the given property, the proof is a counterexample with
ascending precisions.

We will use a simple mutual exclusion algorithm to
demonstrate how lazy slicing works.

Example 1. Let V = {x, y, z} be a variable set,
Dx, Dy, Dz are the domain of x, y, z respectively, where
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Dx = Dy = {n, t, c}, and Dz = {0, 1}. x and y denote
two processes, n, t, c are the possible values of x and
y. x = n, t, c (or y = n, t, c) denotes process x (or y) is
not in its critical section, is trying to enter its critical
section and is already in its critical section respectively.
And variable z determines which process can enter the
critical section when both x and y are equal to t. z = 0
denotes x has the permission, while z = 1 denotes y
has the permission. The event set which determines
how the algorithm runs is given in Table 1.

Table 1. Event Set of Process Mutual Exclusion Algorithm

No. Guard Assignment

e1 x = n x = t
e2 x = t ∧ y = n x = c
e3 x = t ∧ y = t ∧ z = 0 x = c
e4 x = c ∧ z = 0 z = 1
e5 x = c x = n
e6 y = n y = t
e7 y = t ∧ x = n y = c
e8 y = t ∧ x = t ∧ z = 1 y = c
e9 y = c ∧ z = 1 z = 0
e10 y = c y = n

The function of an event is to execute assignments
when the guard is satisfied. For example, if the guard
of e1 holds, i.e., x = n is true, then e1 assigns t to x.
Let x = y = n initially, then Fig.1 shows the state tran-
sition system of process mutual exclusion algorithm.

Fig.1. State transitions system of process mutual exclusion algo-

rithm.

If ϕ1 = ¬(x = c ∧ y = c) is a desired property, then
lazy slicing runs as follows.

Step 1 (Corresponding to Section 3). Calculate an
over-approximate slice with regard to Fig.1 and ϕ1.

Because ϕ1 contains only x and y, the assignments
of e1, e2, e3, e5, e6, e7, e8, e10 introduce none variable

other than x and y, so the over-approximate slice is re-
lated to a variable set containing x and y, and an event
set (see Table 2) containing e1, e2, e3, e5, e6, e7, e8 and
e10. Besides, the guards of e3 and e8 contain z (not in
{x, y}) which causes the guards of e3 and e8 are set to
true.

Table 2. Event Set of the Over-Approximate Slice
with Regard to Fig.1 and ϕ1

No. Guard Assignment

e1 x = n x = t
e2 x = t ∧ y = n x = c
e3 true x = c
e5 x = c x = n
e6 y = n y = t
e7 y = t ∧ x = n y = c
e8 true y = c
e10 y = c y = n

So the over-approximate slice with regard to Fig.1
and ϕ1 is depicted in Fig.2.

Fig.2. Over-approximate slice of Fig.1 with regard to ϕ1.

Note that in this example, we calculate over-
approximate slice according to the method given in
[18]. Its purpose is to introduce a spurious counterexa-
mple (Fig.2, the path colored red). We will give an
improved method which will build a more precise over-
approximate slice than Fig.2 under the same conditions
in Section 7.

Step 2 (Corresponding to Section 4). Spurious
counterexample decision.

Assume lazy slicing searches (DFS) along path π =
snnstnscnsctscc (Fig.2, the path colored red), let R de-
note the states which have already been checked. As
scc does not satisfy ϕ1, so π is a counterexample on
Fig.2, and at this time R = {snn , stn , scn , sct , scc}. If
there does not exist a corresponding path of π on Fig.1,
then π is not a real counterexample, i.e., a spurious
counterexample. In order to determine whether π is
a spurious counterexample, lazy slicing tries to find
a corresponding path of π on Fig.1. While we can
only find two path fragments π1 = snn0stn0scn0sct0
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and π2 = snn1stn1scn1sct1 corresponding to path frag-
ment snnstnscnsct (see Fig.3, where S1 is the feasible
or reachable equivalent state set of Snn and the calcu-
lation of Si is defined in Proposition 3 in Section 4).

Fig.3. Spurious counterexample decision of π.

We can conclude from Fig.3 that there is no path
corresponding to π in Fig.1, i.e., π is a spurious coun-
terexample and sct is the dead-end state. We call
snnstnscnsct the feasible prefix of π due to π1 and π2.
Then we remove scc from R because scc is infeasible,
so we have R = {snn , stn , scn , sct} now.

Note that snn0stn0scn0sct0 corresponds to
snnstnscnsct means that snn0, stn0, scn0, sct0 are cove-
red by snn , stn , scn , sct respectively, and the state
transitions of snn0stn0scn0sct0, snnstnscnsct are caused
by the same event sequence e1e2e6 (see Fig.3). Infor-
mally, if snn in Fig.2 satisfies a property ϕ implies snn0

in Fig.1 satisfies ϕ too, then we say snn covers snn0 or
snn0 is covered by snn .

Now that π is a spurious counterexample, so the
next step is to determine which part of Fig.2 needs to
be refined.

Step 3 (Corresponding to Section 5). Refine a part
of Fig.2 which has not been explored previously.

Because neither sct0 nor sct1 can transit to a state in
Fig.1 corresponding to scc via event e8 (see Fig.3), the
guard of e8 suggests variable z (belongs to the guard
of e8) should be used to refine Fig.2.

According to Step 1, the precision of the refined over-
approximate slice is {x, y, z}, so e4 and e9 are added to
the event set of Fig.2, and the guards of e3 and e8 will
not be set to true because the variables of their guards
are contained in {x, y, z}, which makes the event set of
the refined over-approximate slice the same as Table 1.
Finally, we get a refined over-approximate slice which
is identical to the original model (i.e., Fig.1).

The key difference between lazy slicing and CEGAR-
based slicing is that lazy slicing explores state space
from the successors of the feasible prefix of the spur-
ious counterexample π instead of exploring the entire
refined over-approximate slice (see Fig.4).

Fig.4 shows the feasible equivalent states (colored
blue) and the feasible equivalent successors (colored
green and red) of each state on the feasible prefix of

π. Sfe(snn) Sfe(stn), Sfe(scn), Sfe(sct) denote the
feasible equivalent state sets of snn , stn , scn , sct re-
spectively. Posts(Sfe(snn)) denotes the successor of
Sfe(snn), which is called the feasible equivalent succes-
sor set of snn . In the following parts, we use Poste(s)
to represent the single successor of a given state s via
a given event e. Let take sct as an example, sct0 and
sct1 are the feasible equivalent states of sct , because
they satisfy the following two conditions: firstly, they
are on the corresponding paths of the feasible prefix of
π (see Fig.3); secondly, they are covered by sct . snt0

and sct1 are successors of sct0, and snt1 is the succes-
sor of sct1, so we call snt0, sct1 and snt1 the feasible
equivalent successors of sct (see Fig.4). sct1 is colored
green because it is covered by sct which is in R, and
there is no state in R covers snt0 and snt1, thus they
are colored red.

Fig.4. Feasible equivalent successors of the feasible prefix of π.

We take the feasible equivalent successors of the fea-
sible prefix of π which are not covered by R (states
colored red) as the initial states of the refined local
over-approximate slice, and continue exploring the state
space on the refined over-approximate slice from these
states on.

Step 4 (Corresponding to Section 6). Search state
space lazily.

Note that the feasible equivalent successors of the
feasible prefix of π belong to the original Kripke model,
so before exploring the remained state space, we have
to project these states to the refined over-approximate
slice. In this case, the refined over-approximate slice
is the same as the original Kripke model, so we search
the remained state space from the feasible equivalent
successors directly.

We continue the depth first search from the feasible
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equivalent successors of sct . The blue states and tran-
sitions in Fig.5 show the search paths along snt0. The
dashed arrow from sct to snt0 means this transition is
between states with different precisions. Then we tra-
verse along path snt0snc0snn0, as snn0 is covered by
snn , so we take snn as the successor of snc0, and draw a
dashed arrow from snc0 to snn . Then we stop traversing
along this path, and turn to deal with other successors
of snc0. So we continue traversing along stc0stn0, and
for the same reason, we stop exploring this path with
drawing a dashed arrow from stc0 to stn . As neither
stc0 nor snc0 has a successor that has not been tra-
versed, we turn to deal with stt0, the successor of snt0,
and search along path stt0sct0, finally we stop explor-
ing this path with drawing a dashed arrow from stt0 to
sct . The next step is to search along snt1 which is the
only successor of sct that has not been handled till now.
The states and transitions colored red show the search
results along snt1 (see Fig.5). As to sct1, it is covered
by sct . This means sct can transit to itself and this self
loop is omitted.

Fig.5. State space has been expanded by lazy slicing after the

exploration along sct is finished.

Then lazy slicing turns to deal with scn . The blue
transitions in Fig.6 depict the search paths along scn .
As sct0 and sct1 are covered by sct , we should have
drawn a solid arrow from scn to sct , but this arrow al-
ready exists. scn1 is covered by scn , and this self loop
is omitted. snn1 is covered by snn , so we draw a blue
solid arrow from scn to snn . stn and snn are handled
in the same way. The red transitions and green transi-
tions in Fig.6 show the search path along stn and snn

respectively.
Lazy slicing terminates after all paths starting from

snn have been explored with the result that Fig.1 satis-
fies ϕ1. The final state space expanded by lazy slicing
is shown as Fig.6.

Improvement. Intuitively, in this example, lazy
slicing explores only 13 states to accomplish the veri-
fication (12 states on Fig.6, 1 state in the infeasible

Fig.6. State space expanded by lazy slicing.

suffix of π1, i.e., scc). While CEGAR-based slicing has
to traverse 21 states to accomplish the same task (5
states in the spurious counterexample π1, and 16 states
in Fig.1).

Furthermore, we do not need to draw the dashed
arrows only for the purpose of verification. These ar-
rows are designed to provide a comparison between the
original model (Fig.1) and the over-approximate slice
with multiple precisions (Fig.6). As a matter of fact,
all the behaviours of Fig.1 can be found in Fig.6. This
means that we can find a counterpart in Fig.6 for every
state or transition in Fig.1. In the following sections,
we make this intuitive algorithm precise.

3 Over-Approximate Slicing

We consider program models which are similar to
the definition of [21].

Let V = {v1, v2, . . . , vn} be the variable set of a pro-
gram, D1, D2, . . . , Dn be the domains of v1, v2, . . . , vn

respectively; let Evt denote the event set of a program,
an event e ∈ Evt is a conditional assignment defined on
V :

guard(VEvt) 7→





v1 = Expr1,

v2 = Expr2,

...

vm = Exprm.

(1)

The left part of (1), i.e., guard(VEvt), is called the guard
of an event. It is a logic expression defined on VEvt ,
where VEvt ⊆ V . The right part of (1) is an assignment
which consists of a set of assignment expressions with
the form v1 = Expr i, where vi ∈ V , and vi is evaluated
as the value of Expr i. And s′′ = e(s′) is a transition
from s′ to s′′ caused by e, where e ∈ Evt . For conve-
nience, we write guard(e) to denote the guard of e, and
assign(e) the assignment of e. AE (assign(e)) is a set of
assignment expressions of assign(e), target(ae) denotes
the target variable of ae, where ae ∈ AE (assign(e)). A
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program can be defined as a Kripke structure directly.
Definition 1. A Kripke structure is a tuple K =

(S, T, I, L,AP) where
• S ⊆ Dv1 ×Dv2 ×· · ·×Dvn

is a set of states, where
V = {v1, v2, . . . , vn},
• T ⊆ S × Evt × S is a set of transitions,
• I ⊆ S is a set of initial states,
• AP is a set of atomic propositions, and
• L : S → 2AP is a labelling function,

where I = dvi1×dvi2×· · ·×dvim
×Dvj1×Dvj2× · · ·×Dvjm

,
dvi1 , dvi2 , . . . , dvim

are initial values of vi1, vi2, . . . , vim ,
and {vi1, vi2, . . . , vim} = V \{vj1, vj2, . . . , vjn}. For in-
stance, in Example 1, x and y are both evaluated as
n initially, so I = {n} × {n} × {0, 1} = {snn0, snn1}.
S can be defined recursively as follows: for any s ∈ I,
we have s ∈ S; for any state s ∈ S, if s transmits to a
state s′ via e ∈ Evt , then s′ ∈ S. For any two states
s1, s2 ∈ S, if s1 can transit to s2 via e ∈ Evt , we have
(s1, e, s2) ∈ T .

Definition 2. A path is a state sequence s0,
s1, . . . , sn on a Kripke structure K, where s0 ∈ I,
and for every si, si+1, there is an e ∈ Evt such that
(si, e, si+1) ∈ T , 0 6 i < n. Paths(K) is the set con-
taining all paths of K.

Definition 3. Let π = s0, s1, . . . , sn be a path
on a Kripke structure K, a sequence of the form
L(s0), L(s1), . . . , L(sn) is called the trace of π, denoted
trace(π). The traces of Kripke structure K are thus
words over the alphabet 2AP , denoted as Traces(K).

Definition 4. A slicing criterion of K =
(S, T, I, L,AP) is a tuple C = (I, var(ϕ)), where K
is a Kripke model, I is the initial state set of K, ϕ is
the desired property, var(ϕ) ⊆ V denotes the variables
appearing in ϕ.

Let K0 = (S0, T 0, I0, L0,AP0) be the over-appro-
ximate slice of K with respect to C = (I, var(ϕ)).
There are two key steps in computing K0. We first com-
pute the variable set V 0 of K0 by dependency analysis,
then compute the event set Evt0 of K0 according to
V 0. V 0 is computed as follows:

V0 = var(ϕ),

Vi+1 = Vi

⋃
ae∈AE(assign(e))∧

target(ae)∈Vi∧e∈Evt

var(ae). (2)

This computation terminates at some i = k, where
1 6 k < |V |. When the computation is finished, we
have V 0 = Vk+1 = Vk. Evt0 is computed as follows.

Evt0 =
⋃

e∈Evt∧∃ae∈AE(assign(e)).

(target(ae)∈V 0→var(ae)⊆V 0)

e. (3)

For ∀e ∈ Evt0, if ∃ae ∈ assign(e).(target(ae) 6∈ V 0),
then ae is removed from assign(e).

In order to show the advantages of lazy slicing
compared with CEGAR-based methods, we used the
method of [18] to produce the event set of an over-
approximate slice[18], which will lead to a much coarser
slice. We will give an improved over-approximate slic-
ing method to build a more precise model in Section 7.
Note that, Evt0 originates from Evt , an event e′ in Evt0

is just a different version of its corresponding event in
Evt .

Definition 5. e′ is called an equivalent event of
e, or e is called an equivalent event of e′ iff e ∈ Evt,
e′ ∈ Evt0 and e′ is a corresponding version of e, denoted
as e′ ∼= e or e ∼= e′.

Definition 6. We say Evt weakly contains Evt0

or Evt0 is weakly contained in Evt iff for ∀e′ ∈ Evt0,
∃e ∈ Evt such that e′ ∼= e, denoted as Evt w Evt0 or
Evt0 v Evt.

The initial state set of K0 can be obtained by pro-
jecting I on V 0 directly. Then the state space and tran-
sition relation of K0 can be generated by V 0 and Evt0

respectively. So the over-approximate slice of the origi-
nal model K with regard to C = (I, var(ϕ)) is defined
as follows.

Definition 7. Let K = (S, T, I, L,AP) be the
original Kripke model, the over-approximate slice model
of K with respect to C = (I, var(ϕ)) is K0 =
(S0, T 0, I0, L0,AP0), where
• S0 ⊆ Dv1 × Dv2 × · · · × Dvm is a set of states,

where v1, v2, . . . , vm ∈ V 0, Dv1 , Dv2 , . . . , Dvm
are the

domains of v1, v2, . . . , vm respectively, m = |V 0|,
• T 0 ⊆ S0 × Evt0 × S0 is a set of transitions,
• I0 ⊆ S0 is a set of initial states, I0 = {s|s ∈

S0 ∧ s = PrjV 0(s′) ∧ s′ ∈ I},
• L0 : S0 → 2AP0

, L0(s0) = PrjAP0(L(s)), where
s0 ∈ S0, s ∈ S, PrjV 0(s) = s0,
• AP0 = {p|p ∈ AP ∧ var(p) ⊆ V 0}.
In Definition 7, v1, v2, . . . , vm ∈ V 0 has a compati-

ble order with v1, v2, . . . , vn ∈ V , m 6 n; PrjV 0(s′)
denotes the projection state of s′ on V 0. For example,
let snt0 be a state on Fig.1, then Prj{x,y}(snt0) = snt ,
Prj{x,z}(snt0) = sn0, and Prj{y,z}(snt0) = st0. Let s be
a state of S0, we define [s] = {s′|s′ ∈ S∧PrjV 0(s′) = s}.
Similarly, PrjAP0(L(s)) is a subset of L(s) by project-
ing L(s) on AP0.

Now we can demonstrate how the over-approximate
slice in Fig.2 is built in a precise way. First, we
have the slicing criterion C = {{snn0, snn1}, {x, y}};
second, the precision V 0 = {x, y} of Fig.2 is calcu-
lated according to (2); third, the event set Evt0 =
{e1, e2, e3, e5, e6, e7, e8, e10} (see Table 2) of Fig.2 is ob-
tained by (3). Finally, we generate Fig.2 (denoted as
K0) according to Definition 7.

We get K0 by ignoring the irrelevant portion of
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Fig.1 (denoted K) which is indirectly related to ϕ1.
The state space of K0 is reduced exponentially at the
cost of sacrificing the strong property resistance power
of static slicing, because over-approximate slicing may
introduce additional behaviour that does not exist in
original specification (see Figs.1 and 2). That means
K0 is a superset of K.

However, we are interested in verifying properties
such that whenever a system satisfies a given property,
then also does any subset of this system, i.e., if K0 |= ϕ,
then K |= ϕ, conversely, if k0 6|= ϕ, then K 6|= ϕ may
not be true. We can prove this by constructing a simu-
lation relation between the original Kripke model and
its over-approximate slice. Before that, the definition of
simulation defined on Kripke models is given as follows.

Definition 8. Let Ki = {Si, Ti, Ii, Li,AP i} be
two Kripke models, where i = 1, 2, Evt1 w Evt2 and
V1 ⊇ V2. If AP = AP1 ∩ AP2 is considered as the
common atomic proposition set of K1 and K2, then a
simulation relation defined on (K1,K2) is a binary re-
lation R = S1 × S2 such that

1) For all s1 ∈ I1, ∃s2 ∈ I2 such that (s1, s2) ∈ R;
2) For all (s1, s2) ∈ R, where si ∈ Si, the following

conditions hold.
a) PrjAP (L1(s1)) = PrjAP (L2(s2));
b) For all (s1, e1, s

′
1) ∈ T we have PrjV2(s1) =

PrjV2(s
′) implies (s′1, s2) ∈ R; PrjV2(s1) 6= PrjV2(s

′
1)

implies ∃s′2 ∈ S2 and ∃e2 ∈ Evt2 such that (s2, e2, s
′
2) ∈

T2 ∧ (s′1, s
′
2) ∈ R ∧ e2

∼= e1.
K1 is simulated by K2 (or, equivalently, K2 simu-

lates K1), denoted as K1 ¹ K2, if there exists a simu-
lation relation R for (K1,K2).

Theorem 1. K0 = (S0, T 0, I0, L0,AP0) is an over-
approximate slice of K = (S, T, I, L,AP) with regard
to C = (I, var(ϕ)), if AP0 is considered as the atomic
proposition set of K and K0, K ¹ K0 holds.

Proof. AP0 = AP0 ∩ AP (according to Definition
7), let R ⊆ S × S0 be a binary relation defined on
(K,K0), (s1, s2) ∈ R holds iff PrjV 0(s1) = s2, where
s1 ∈ S, s2 ∈ S0.

1) For ∀s1 ∈ I, ∃s2 ∈ I0 such that PrjV 0(s1) =
s2 holds (according to Definition 7), it follows that
(s1, s2) ∈ R;

2) For ∀(s1, s2) ∈ R:
a) As s2 = PrjV 0(s1), we have L0(s2) =

PrjAP0(L(s1)) holds; besides, PrjAP0(L0(s2)) =
L0(s2) such that PrjAP0(L(s1)) = PrjAP0(L0(s2))
holds.

b) For all (s1, e1, s
′
1) ∈ T , PrjV 0(s1) = PrjV 0(s′1)

implies PrjV 0(s′1) = PrjV 0(s2) holds, namely (s′1, s2) ∈
R (as PrjV 0(s1) = PrjV 0(s2)). If PrjV 0(s1) 6=
PrjV 0(s′1), then there exists ae ∈ AE (assign(e1)) such
that target(ae) ∈ V 0 and var(ae) ⊆ V 0 hold, so there

exists an event e′1 ∈ Evt0 such that e′1 ∼= e1 (according
to (3)). Note that, in this case, if var(guard(e1)) 6⊆ V 0

holds, then guard(e′1) is set to true, so s2 can trigger
guard(e′1); if var(guard(e1)) ⊆ V 0 holds, guard(e′1) =
guard(e1) holds, s2 can also trigger guard(e′1). So there
must exist a state s′2 ∈ S0 such that (s2, e

′
1, s

′
2) ∈

T 0. Because AE (e′1) consists of assignment expressions
(whose assignment target variable belongs to V 0) in
AE (e1), e1 has the same effect on variables of V 0 as
e′1. As PrjV 0(s1) = PrjV 0(s2), it follows PrjV 0(s′1) =
PrjV 0(s′2), i.e., (s′1, s

′
2) ∈ R holds. ¤

Definition 9. Let Ki = (Si, Ti, Ii, Li,AP) be
two Kripke structures defined on AP, for path πi ∈
Paths(Ki), where i = 1, 2, π1 and π2 are stutter trace
equivalent, denoted as π1

∆=π2, if there exists a se-
quence A0A1A2 · · · with Ai ⊆ AP and natural numbers
n0, n1, n2, . . . , m0,m1,m2, · · · > 1 such that

trace(π1) = A0 · · ·A0︸ ︷︷ ︸
n0times

A1 · · ·A1︸ ︷︷ ︸
n1times

A2 · · ·A2︸ ︷︷ ︸
n2times

· · · ,

trace(π2) = A0 · · ·A0︸ ︷︷ ︸
m0times

A1 · · ·A1︸ ︷︷ ︸
m1times

A2 · · ·A2︸ ︷︷ ︸
m2times

· · · ,

where trace(π1) and trace(π2) belong to the language
given by the regular expression A+

0 A+
1 A+

2 · · ·.
Corollary 1. If AP0 is considered as the atomic

proposition set of K and K0, then for each trace τ of
K, there exists a trace τ0 that is stutter equivalent to τ
in K0.

Proof. Assume that π = s1e1s2e2s3e3 · · · is an ar-
bitrary path of K, where s1 ∈ I. As K ¹ K0 holds,
∃s̃1 ∈ I0 such that (s1, s̃1) ∈ R holds (according to
1) of Definition 8), then there exists a path π0 of K0

such that s̃1 is the first state of π0. According to 2)
of Definition 8, we have PrjAP0(L(s1)) = L(s1) =
PrjAP0(L0(s̃1)) = L0(s̃1), let A1 = L(s1) = L0(s̃1).

Assume that (s1, s̃j) ∈ R, i.e., Ak =
PrjAP0(L(si)) = L(si) = L0(s̃j), where state si tran-
sits to state si+1 via ei, si is the i-th state on π, ei is
the i-th event on π, s̃j is the j-th state on π0.

According to 2) of Definition 8, if PrjV 0(si) =
PrjV 0(si+1) holds, then (si+1, s̃j) ∈ R, i.e., Ak =
L(si+1) = L0(s̃j); if PrjV 0(si) 6= PrjV 0(si+1) holds,
then there exists a state s̃j+1 ∈ S0 such that
(si+1, s̃j+1) ∈ R holds, in this case, we have Ak+1 =
L(si+1) = L0(s̃j+1), where s̃j+1 is the (j + 1)-th state
of π0.

We can conclude that for every path π on K
there exists a path π0 on K0 such that trace(π)
and trace(π0) belong to the same regular expression
A+

1 A+
2 A+

3 A+
4 · · ·A+

k · · ·, i.e., for each trace τ of K, there
exists a trace τ0 that is stutter equivalent to τ on K0.

¤
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Corollary 2. If AP0 is considered as the atomic
proposition set of K and K0, then K0 |= ϕ implies
K |= ϕ, where ϕ is an LTL\O formula (LTL\O denotes
the LTL formula without the next step operator O[25]).

Proof. We only consider the language constituted
by AP0, because it is sufficient to prove the property of
interest. As K0 |= ϕ, any trace of Traces(K0) belongs
to L(ϕ) (L(ϕ) is a language of words over the alphabet
2AP ). It follows that any trace of Traces(K) belongs
to L(ϕ) (according Corollary 1), i.e., K |= ϕ. ¤

Corollary 3. K0 = (S0, T 0, I0, L0,AP0) is an
over-approximate slice of K = (S, T, I, L,AP) implies

S ⊆
⋃

s∈S0

[s].

Proof. According to Theorem 1, we have K ¹ K0

immediately, so for ∀s ∈ S there exists a state s′ ∈ S0

such that PrjV 0(s) = s′ holds (according to Corollary
1), i.e., s ∈ [s′]. Thus

S ⊆
⋃

s′∈S0

[s′]. ¤

4 Spurious Counterexample Decision

We have to identify whether a counterexample found
on K0 can be concretized on K or not (according to
Corollary 2). This is spurious counterexample decision,
which essentially is to check if there exists a path on K
stutter equivalent to the counterexample found on K0.
Let π̃ = s̃1e

′
1s̃2e

′
2 · · · s̃n−1e

′
n−1s̃n be a counterexample

found on K0, where s̃1 ∈ I0. Spurious counterexample
decision starts from I0 = {s|s ∈ I ∧ s ∈ [s̃1]}, where
[s̃1] = {s|s ∈ S ∧ PrjV 0(s) = s̃1} is the equivalence
class of s̃1 with regard to simulation relation R. Let
ReachEvt\Evt0(I0) be the reachable state set of I0 via
event set Evt\Evt0 = {ei|ei ∈ Evt ∧¬(∃e′i ∈ Evt0.(e′i ∼=
ei))}, then the following proposition holds.

Proposition 1. s ∈ ReachEvt\Evt0(I0) implies
PrjV 0(s) = s̃1.

Proof. Assume there exist two states s and s′ that
belong to ReachEvt\Evt0(I0), and an event e belongs
to Evt\Evt0 such that s can transit to s′ via e, where
PrjV 0(s) = s̃1, and PrjV 0(s′) 6= s̃1. It follows that
∃ae ∈ AE (e) (which can change the value of variables in
V 0) such that target(ae) ∈ V 0. In this case, ∃e′ ∈ Evt0

such that e′ ∼= e, this is contradictory to e ∈ Evt\Evt0.
So for all paths starting from states in I0 via Evt\Evt0,
there does not exist any transition that can change the
value of variables in V 0. As for all s ∈ I0 we have
PrjV 0(s) = s̃1 holds, therefore, there does not exist
state s′ in ReachEvt\Evt0(I0) such that PrjV 0(s) 6= s̃1

holds. ¤

Proposition 1 states that every state in
ReachEvt\Evt0(I0) belongs to [s̃1]. Let S1 =
ReachEvt\Evt0(I0), then whether the path fragment
s̃1e

′
1s̃2 can be concretized is equivalent to whether there

exists a state in ReachEvt\Evt0(I0) that can transit to
another state in [s̃2] via e1. Let Postse1(S1) denote
the successor set of S1 through e1, then the following
proposition holds.

Proposition 2. (s̃1, e
′
1, s̃2) ∈ T 0 implies

Postse1(S1) ⊆ [s̃2].
Proof. Let s1 ∈ S1, then we have PrjV 0(s1) =

s̃1 hold (according to Proposition 1). Let s2 =
Poste1(s1) be the direct successor of s1 through
e1, then we have (s1, e1, s2) ∈ T . Because
e′1 ∼= e1, (PrjV 0(s1), e′1,PrjV 0(s2)) ∈ T 0 holds, i.e.,
(s̃1, e

′
1,PrjV 0(s2)) ∈ T 0. As (s̃1, e1, s̃2) ∈ T 0 holds, it

follows that PrjV 0(s2) = s̃2, i.e., s2 ∈ [s̃2]. Therefore,
we can conclude that Postse1(S1) ⊆ [s̃2] holds. ¤

From Proposition 2, if Postse1(S1) is not empty, the
states in Postse1(S1) belong to [s̃2], i.e., there exists a
concrete path corresponding to s̃1e

′
1s̃2 in the original

model. Conversely, s̃1e
′
1s̃2 is not feasible in the original

model. We have the following conclusions generalized
from Propositions 1 and 2.

Proposition 3. The following conclusions hold.
1) For all s ∈ Si we have PrjV 0(s) = s̃i holds,
2) (s̃i, ei, s̃i+1) ∈ T 0 implies Postsei

(Si) ⊆ [s̃i+1],
where 1 6 i < |π̃|, and Si is defined as follows.

Si = ReachEvt\Evt0(Postsei
(Si−1)). (4)

It follows that π̃ can be concretized by computing
Si iteratively starting from Si, and it will be finished
after at most n iterations, where n = |π̃|. In this case,
if Sn 6= ∅, then π̃ can be concretized, so the verification
is finished with a counterexample π̃; otherwise, we can
conclude that π̃ is a spurious counterexample. We call
Si the feasible equivalent state set of s̃i on the original
model K iff Si 6= ∅, denoted as Sfe(s̃i).

Theorem 2. Assume that π̃ is a counterexample on
over-approximate slice K0 of K. If there exists an i such
that S1, S2, . . . , Si−1 6= ∅ and Si, Si+1, . . . , Sn = ∅,
then π̃ is a spurious counterexample, where 1 < i 6 n.

Theorem 2 can be proved by Proposition 3 easily.
Now we can show why counterexample π in Example
1 is spurious according to Theorem 2. In order to
find a concrete path in Fig.1 that is corresponding
to π, we first calculate S1. In Example 1, S1 =
{snn0, snn1}, because [snn ] will not trigger any event
of Evt\Evt0 = {e4, e9}, we have S2 = {stn0, stn1} ac-
cording to (4). Similarly, we have S3 = {scn0, scn1} and
S4 = {sct0, sct1}. As there does not exist any state in
S4 that can trigger the guard of e8, we have S5 = ∅. It
follows that π̃ is a spurious counterexample according
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to Theorem 2 (see Fig.3).

5 Refine Local Slice

Spurious counterexample means the over-
approximate slice is too rough to prove a given pro-
perty. So we must refine the over-approximate slice.
Lazy slicing only refine a portion of the slice that has
not been checked, which is the main difference between
our method and CEGAR-based slicing.

Let π̃ = s̃1e
′
1s̃2e

′
2 · · · s̃n−1e

′
n−1s̃n be a spurious coun-

terexample on K0, then there exists an i such that
S1, S2, . . . , Si−1 6= ∅ and Si, Si+1, . . . , Sn = ∅ (Theo-
rem 2), where K0 is an over-approximate slice of an
original Kripke model K, 1 < i 6 n.

Definition 10. Let π̃[..i − 1] = s̃1e
′
1s̃2e

′
2 · · · s̃i−1 be

a feasible prefix of π̃, where s̃i−1 is the dead end state
of π̃[..i− 1].

Feasible prefix is the path fragment of spurious coun-
terexample that can be concretized in original model.
Dead end state s̃i−1 is able to transit to s̃i through e′i−1

on K0. But this cannot happen on the original model
K, because the guard of ei−1 contains variables indi-
rectly related to the property of interest. These varia-
bles are left out when computing the over-approximate
event set Evt0, which causes the guard of e′i−1 to be
triggered on s̃i−1, and results in the transition from
s̃i−1 to s̃i via e′i−1.

Theorem 3. π̃ = s̃1e
′
1s̃2e

′
2 · · · s̃n−1e

′
n−1s̃n is a spu-

rious counterexample on K0, s̃i−1 is the dead end state,
then var(guard(ei−1)) 6⊆ V 0.

Proof. Assume var(guard(ei−1)) ⊆ V 0 holds, let
s ∈ Si−1 = Sfe(s̃i−1) ⊆ [s̃i−1]. Because s̃i−1 is
the dead end state, there does not exist any state in
Si−1 that can trigger the guard of ei−1 (Theorem 2),
it follows that guard(ei−1) does not hold on state s.
As var(guard(ei−1)) ⊆ V 0, we have guard(e′i−1) =
guard(ei−1), where ei−1

∼= e′i−1 ∧ ei−1 ∈ Evt ∧ e′i−1 ∈
Evt0. Therefore, guard(e′i−1) is false on PrjV 0(s), so
guard(e′i−1) cannot be triggered on s̃i−1 too. It means
that s̃i−1 cannot transit to s̃i via e′i−1, but this is con-
tradictory to the fact that s̃i−1 can transit to s̃i via
e′i−1 on K0. ¤

Theorem 3 guarantees that the precision of the re-
fined over-approximate slice is inevitably higher than
the one before refinement, and it also ensures that the
refinement iteration terminates when the precision is
increased to the same as the original model in the worst
case. In order to refine only a local slice which has not
been explored before, we first need to compute the slic-
ing criterion of this local slice, let it be Cr = (Ir, Vr).

Vr consists of var(guard(ei−1)) and the precision
of K0 (the over-approximate slice generates the spu-
rious counterexample), so we have Vr = V 0 ∪

var(guard(ei−1)). Then we can obtain the precision
V 0

r and the event set Evt0
r of K0

r which is refined from
K0 according to (3).

Ir consists of two parts. One is the uncovered initial
states of K0, denoted as II . The other is the uncovered
feasible successor set of the feasible prefix of π̃ which
is found on K0, denoted as IP . We give the definition
of cover relation first before introducing how II and IP

are computed.
Definition 11. K0

i is an over-approximate slice of
K, where i = 1, 2. s̃1 covers s̃2 or s̃2 is covered by s̃1

iff [s̃1] ⊇ [s̃2], denoted as s̃1 / s̃2, where s̃i is a state of
K0

i or K.
II is computed as follows.

II =
⋃

s̃∈I0∧∀s′∈R.¬(s′Bs̃)

[s̃], (5)

where R stores the states that have been traversed.
However, we cannot obtain IP by simply adding the
direct successor of s̃j (let s̃j be a state on the feasi-
ble prefix of the spurious counterexample). The main
reason is that we cannot guarantee its direct successor,
let it be s̃, is a feasible successor of s̃j , i.e., the corre-
sponding transition from s̃j to s̃ may not occur on the
original model. So we take the uncovered direct succes-
sors of Sfe(s̃j) as the feasible equivalent successors of
s̃j . Note that if a state is covered it means that it has
been traversed previously.

Definition 12. Let s̃j be a state of the feasible pre-
fix of the spurious counterexample π̃, Post fe(s̃j) is the
feasible equivalent successor set (on the original Kripke
model K) of s̃j iff

Post fe(s̃j) = {s|s ∈ Posts(Sfe(s̃j))∧∀s′ ∈ R.¬(s′Bs)},

where Posts(Sfe(s̃j)) denotes the direct successor set of
Sfe(s̃j). So IP is computed as follows.

IP =
⋃

16j6i−1

⋃

s∈Post fe(s̃j)

s. (6)

In Step 3 of Example 1, we get Vr = {x, y} ∪
var(guard(e8)) = {x, y, z}, II = ∅ and IP equals to
the state set consisting of the red states in Fig.4. So
we can obtain a refined local over-approximate slice K0

r

induced by Cr = (II ∪ IP , Vr).

6 Lazy Slicing Based Exploration

In order to avoid the additional cost of CEGAR-
based slicing, we refine a local slice which has not been
checked, and then traverse along the initial state set of
the refined local slice K0

r induced by Cr = (Ir, Vr). We
can get the initial state set I0

r directly by projecting Ir



Shao-Bin Huang et al.: Lazy Slicing for State-Space Exploration 881

onto K0
r , but in order to integrate slicing-verification-

refinement iteration into one step, we compute I0
r on-

the-fly by focus operator and defocus operator.
Definition 13. Focus operator is a projection func-

tion

F (2I0
, V 0

r ) =
⋃

s∈I0∧∀s′∈R.¬(s′Bs̃)

⋃

Prjprec(s̃)(s)=s∧s∈S0
r

s,

where prec(s̃) is the precision of s̃. The role of fo-
cus operator is to project the uncovered initial state
of K0 onto the refined over-approximate slice k0

r (with
a higher precision). While the role of defocus operator
is to project states on the original Kripke model K onto
a given over-approximate slice K0 of K.

Definition 14. Defocus operator is a projection
function,

D(2S , V 0) =
⋃

s∈2S

PrjV 0(s),

where S is the state set of the original Kripke model K,
V 0 is precision of K0.

The initial state set Io
r of K0

r consists of two parts:
one part is projected from the uncovered initial state
of K0 by focus operator, the other part is projected
from the feasible equivalent successors of the feasible
prefix of the spurious counterexample by the defocus
operator. Note that I0

r is not only the initial state set
of K0

r , but also the states which are on the boundary
between the explored state space and the unexplored
one (for example, the states which belong to both Fig.1
and Fig.6 and their predecessors which also belong to
Fig.2 and Fig.6).

We first deal with the initial state projected from
the feasible successors of the dead end state. Let it be
s̃i−1. In fact, we compute these initial states directly
from the feasible equivalent successors of s̃i−1 by the
help of defocus operator. These states returned by de-
focus operator are both the initial states of K0

r and the
feasible successors of s̃i−1 on K0. Our algorithm con-
tinues exploring along these initial states on K0

r in DFS
(depth first search) order.

After all of the states on the feasible prefix have been
handled, if there still exist unexplored initial states of
K0, we project these states onto K0

r by the help of fo-
cus operator, then continue searching from these states
one by one in the same way as before.

Step 4 of Example 1 shows how lazy slicing works
when a spurious counterexample is found. In Fig.5, sct

is the dead end state, the feasible equivalent states of
sct are Sfe(sct) = {sct0, sct1}, the feasible equivalent
successors of sct are Post fe(sct) = {snt0, snt1}. As the
precision of K0

r is V 0
r = {x, y, z}, we get D(Post fe(sct),

{x, y, z}) = {snt0, snt1}. Then our algorithm takes snt0,
snt1 as successors of sct , thus it works as shown in Fig.5.

In Example 1, there is no state that does not sati-
sfy ϕ1 has been found, and there does not exist any
state corresponding to the initial state in K0 (see Fig.2)
which is not covered after exploring along snnstnscnsct .
So we have K |= ϕ1.

Lazy slicing detects cycle path with the help of cover
relation. If a state is covered by R, let it be sc, the
exploration stops at sc and turns to the other branch
of the ancestor of sc. This is because any error state
reached from sc will be traversed along the state that
covers sc, regardless of whether this error state has been
found or not.

In practice, an equivalent condition of Definition 8
can be used to simplify cover relation decision.

Proposition 4. s̃1 B s̃2 iff V 0
1 ⊆ V 0

2 ∧ PrjV 0
1
(s̃2) =

s̃1, where K0
i is the over-approximate slice of original

model K, s̃i is a state on K0
i , V 0

i is the precision of K0
i ,

i = 1, 2.
Proof. First, we prove [s̃1] ⊇ [s̃2] ⇒ V 0

1 ⊆ V 0
2 ∧

PrjV 0
1
(s̃2) = s̃1. Assume [s̃1] ⊇ [s̃2] and V 0

1 6⊆ V 0
2 ,

i.e., ∃v ∈ V 0
1 such that v 6∈ V 0

2 . In this case,
Prjv(s1) = Prjv(s̃1) holds for all s1 ∈ [s̃1]. Because
v 6∈ V 0

2 , there inevitably exists state s2 ∈ [s̃2] such that
Prjv(s2) = Prjv(s̃1), namely s2 6∈ [s̃1]. It is contradic-
tory to the fact that [s̃1] ⊇ [s̃2]. Thus we have [s̃1] ⊇ [s̃2]
implies V 0

1 ⊆ V 0
2 . In this case, PrjV 0

1
(s̃2) 6= s̃1, then

there exists at least one variable v′ ∈ V 0
1 such that

Prjv′(s̃1) = Prjv′(s̃2), i.e., v′ 6∈ V 0
2 , which is contradic-

tory to V 0
1 ⊆ V 0

2 .
V 0

1 ⊆ V 0
2 ∧ PrjV 0

1
(s̃2) = s̃1 ⇒ [s̃1] ⊇ [s̃2]. For all

s ∈ [s̃2], because PrjV 0
1
(s̃2) = s̃1 and V 0

1 ⊆ V 0
2 , we

have s ∈ [s̃1]. It follows that [s̃2] ∈ [s̃1]. ¤
Algorithm 1 describes the main steps of lazy slicing.

The first step is to compute the first over-approximate
slice K0

1 from an initial Kripke model with regard to
a given property ϕ, then we initialize K0

c = K0
1 (lines

2∼5, Algorithm 1), where K0
c always denotes the re-

fined over-approximate slice in the slicing-verification-
refinement iteration, we call K0

c the current slice. The
while iteration at lines 6∼12 guarantees all paths start-
ing from the initial state set of K0

1 will be explored
(no matter in what precision). If an error state is
found (line 11, Algorithm 1), lazy slicing determines
whether a real counterexample is found or not (line
12). If lazy slicing discovers a spurious counterexam-
ple, it refines the current over-approximate slice (line 9,
Algorithm 2), then continues searching on the refined
over-approximate slice (lines 15∼16, Algorithm 1). If
no error state is found, it goes on exploring the state
space with current precision (line 19, Algorithm 1).

Note that K0
c denotes the first over-approximate
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Algorithm 1 LazySlicing (K, ϕ)
Require: Kripke Structure of the original model K,

property ϕ
Ensure: Return true if K |= ϕ, otherwise return false

plus a counterexample
1. Compute over-approximate slicing K0

1 ;
2. V 0

c := V 0
1 ;

3. R := ∅; Stack U := null; {R is the set of states that
have been traversed, U is the stack that stores the
current search path}

4. Bool counterexample:=false;
5. I0

c := I0
1 := F (I0

c , V 0
c );

6. while ¬counterexample ∧ I0
c 6= ∅ do

7. Get a state s form I0
c and remove it from I0

c ;
8. Push(s, U); R := R ∪ {s};
9. repeat
10. s′ := Top(U);
11. if s′ 6|= ϕ then
12. if Cedecision(U, V 0

c ) then
13. counterexample:= true: {marks a real

counterexample then terminates}
14. else
15. I0

c := F (I0
c , V 0

c );
16. Getpost(V 0

c ,Evt0c);
17. end if
18. else
19. Getpost(V 0

c ,Evt0c);
20. end if
21. until counterexample ∨ U = null
22. end while
23. if (¬counterexample) then
24. return K |= ϕ;
25. else
26. return Reverse(U);
27. end if

Algorithm 2 Cedecision (U, V 0
c )

Require: Stack U , precision of the current over-

approximate slicing V 0
c

Ensure: Return true if the counterexample in U can be

concretized, otherwise return false

1. Let s̃1s̃2 · · · s̃n be the path fragment with precision
V 0

c ; {this path fragment is on the top of stack U}
2. if s̃1 is not the bottom element of U then

3. Let s̃t be the element under s̃1 in U ; {s̃t is the

dead end state}
4. Sfe(s̃1) := Post fe(s̃t);

5. end if

6. for i = 1 to n do

7. if Sfe(s̃i) = ∅ then

8. Pop s̃n, s̃n−1, . . . , s̃i+1, s̃i from U and move

them from R;

9. Refine(V 0
c , evt); {evt is the event making

s̃i−1
evt→ s̃i happen}

10. return false;

11. else

12. s̃i.post
fe := Post fe(s̃i);

13. end if

14. end for
15. return true;

slice K0
1 initially, we explore on K0

c through V 0
c and

Evt0
c (Algorithm 3). If a spurious counterexample is

found, we refine K0
c , and assign the precision and event

set of the refined over-approximate slice K0
2 to V 0

c and
Evt0

c respectively (Algorithm 4). At this time, K0
c de-

notes K0
2 . We continue exploring on K0

c (K0
2 ). If a new

refinement is performed, then K0
c will denote K0

3 . It
means that K0

c always denotes the over-approximate
slice with the highest precision (i.e., K0

i ) in the i-th
iteration.

Algorithm 3 Getpost (V 0
c ,Evt0c)

Require: V 0
c , evt0c

Ensure: Find an immediate successor (not covered by
R) of Top(U)

1. Bool post := false;
2. while U 6= null ∧ ¬post do
3. Let s := Top(U);
4. if prec(s) 6= V 0

c then

5. Spost := s.post fe ;
6. else
7. Spost := PostsEvt0c

(s); {PostsEvt0c
(s) is the im-

mediate successor set of s wrt event set Evt0c}
8. end if
9. if ∃spost ∈ Spost s.t. 6 ∃sR ∈ R.(sR B sD) then
10. {sD is the only element in D({spost}, V 0

c )}
11. Push(sD, U);
12. post := true;
13. else
14. Pop(U);
15. end if
16. end while

Algorithm 4 Refine (V 0
c , evt)

Require: V 0
c : precision of the current over-approximate
slicing, evt: event lead to the unreachable

bad state

Ensure: Compute precision and event set of a refined

over-approximate slicing

1. V1 := V 0
c ∪ var(guard(evt));

2. repeat

3. V2 := V1;

4. for every e ∈ Evt do

5. for every atom expression ae ∈ assign(e) do

6. if target(ae) ∈ V2 then

7. V1 := V1 ∪ var(ae);

8. end if

9. end for

10. end for

11. until V1 = V2

12. V 0
c := V1;

13. Evt0c = ∅;

14. for every e ∈ Evt do

15. if ∃ae ∈ assign(e).(target(ae) ∈ V 0
c ) then

16. Generate an event e′, let assign(e′) := {ae|ae ∈
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assign(e) ∧ target(ae) ∈ V 0
c };

17. if var(guard(e)) ⊆ V 0
c then

18. guard(e′) := guard(e);
19. else
20. guard(e′) := true;
21. end if
22. Evt0c := Evt0c ∪ e′;
23. end if
24. end for

Spurious counterexample decision (Algorithm 2) of
lazy slicing can be done by dealing with only the path
fragment with current precision instead of the whole
path of a counterexample (lines 2∼5, Algorithm 2).
This improves the efficiency of spurious counterexample
decision remarkably. Theorem 2 and Theorem 5 ensure
the correctness of our decision algorithm. The “for”
iteration (lines 6∼14, Algorithm 2) identifies spurious
counterexample according to Theorem 2. If the given
counterexample is spurious (line 7, Algorithm 2), it
pops the infeasible suffix of the spurious counterexam-
ple (line 8, Algorithm 2), then refines the current over-
approximate slice (line 9, Algorithm 2). Else it pre-
serves the feasible equivalent state set for each state on
the feasible prefix of the spurious counterexample (line
12, Algorithm 2), s̃i.post fe stores the feasible equivalent
successors of si.

Algorithm 3 explores the state space on the current
over-approximate slice. The while iteration guarantees
that a successor of Top(U) will be found except that
all the successors of U are covered by R (lines 2∼16,
Algorithm 3). We put the direct successors (the fea-
sible equivalent successors or successors on the same
over-approximate slice) of Top(U) into Spost no mat-
ter whether the precision of Top(U) is the same as the
current over-approximate slice or not (lines 4∼8, Algo-
rithm 3). If all the elements of Spost are covered by R,
it means all successors of Top(U) have already been ex-
plored, so we pop stack U (lines 13∼15, Algorithm 3).
Else we will find an uncovered successor of Top(U), then
we traverse along this successor by pushing it into stack
U (lines 9∼12, Algorithm 3). Algorithm 3 is carried out
on-the-fly according to the event set determined by the
precision of the current over-approximate slice. Let s
be a state in stack U , Algorithm 3 ensures the paths
that have not been traversed from s will be unfolded in
current precision, which is one of the key steps to avoid
repeating the work done before.

Algorithm 4 refines the over-approximate slice that
produces the spurious counterexample. Lines 1∼12 is a
fix point computation which generates the precision of
the refined over-approximate slice ((2)). Lines 13∼24
generate the event set of the refined over-approximate
slice according to (3). Note that lines 17∼21 deal with

the guard in the same method with [18], we will intro-
duce an improved method to generate the guards of the
event set in Section 7 in order to produce a more precise
over-approximate slice.

A remarkable feature of lazy slicing is that the search
path with ascending precisions, which is caused by dy-
namic local refinement. The definition of a path with
ascending precisions is given as follows.

Definition 15. K is the Kripke model of the origi-
nal specification, K0

1 is the first over-approximate slice
of K, K0

i is the local over-approximate slice refined from
K0

i−1, where K0
i is the i-th over-approximate slice ex-

panded by lazy slicing. Then

π̃ = s̃11s̃12 · · · s̃1n1 s̃21s̃22 · · · s̃2n2 · · · s̃m1s̃m2 · · · s̃mnm

is a search path of LazySlicing (ϕ,K), where π̃i =
s̃i1s̃i2 · · · s̃ini

is a path fragment on K0
i with the pre-

cision V 0
i , ni is the length of π̃i, 1 6 i 6 m.

Theorem 4. Local slice refinement of LazySlicing
(ϕ,K) iterates at most |V | − 1 times.

Proof. Assume that the refinement of LazySlicing
(ϕ,K) iterates more than |V |−1 times. As V 0

1 = var(ϕ)
is not empty, the minimum value of |V 0

1 | is 1. The
minimum value of |V 0

2 | is 2 after the first refinement
iteration (at least one variable is added into V 0

1 in re-
finement according to Theorem 3). In a similar way,
the minimum value of |V 0

3 | is 3 after the second itera-
tion. Thus we can conclude that the minimum value of
|V 0
|V || is |V | after the |V | − 1-th iteration by induction,

and the minimum value of |V 0
|V |+1| is |V | + 1 after the

|V |-th iteration. It is impossible that |V 0
|V |+1| > |V |. ¤

Corollary 4. A path of lazy slicing algorithm has
at most |V | path fragments with ascending precisions.

The proof of Corollary 4 is straightforward. As
we know a path of LazySlicing(ϕ,K) enters a new
path fragment with higher precision after each refine-
ment, and the refinement of LazySlicing(ϕ,K) iterates
at most |V | − 1 times (according to Theorem 4), so the
path of LazySlicing(ϕ,K) enters at most |V | − 1 new
path fragments with ascending precisions in turn. It
follows that the path of LazySlicing(ϕ,K) consists of
at most |V | path fragments with ascending precisions.

Spurious counterexample decision, a time-
consuming work, benefits a lot from a path with as-
cending precisions. It can be done by identifying the
last path fragment with the highest precision instead
of the full path, which significantly reduces the cost of
spurious counterexample decision.

Theorem 5. Let π̃ be a path of LazySlicing (ϕ,K),
then the path fragment starting from the first state on
π̃ to the first state on the last path fragment (with the
highest precision) of π̃ is feasible.
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Proof. Let π̃ = s̃11s̃12 · · · s̃1n1 s̃21s̃22 · · · s̃2n2 · · · s̃m1

s̃m2 · · · s̃mnm
be a path of LazySlicing(ϕ,K), it is

equivalent to prove π̃m = s̃11s̃12 · · · s̃1n1 s̃21s̃22 · · · s̃2n2 · · ·
s̃m1 is feasible, where 1 6 m 6 |V |. If m = 1, then
π̃1 = s̃11. According to Definition 7 we know that
there exists at least one state on the original model K
corresponding to s̃11, so π̃1 is feasible. If m = 2, then
π̃2 = s̃11s̃12 · · · s̃1n1 s̃21. According to Theorem 2 we
know s̃11s̃12 · · · s̃1n1 is the feasible prefix of the spurious
counterexample found on the first over-approximate
slice, and s̃1n1 is the dead end state. Then there exists
s ∈ Post fe(s̃1n1) such that {s̃21} = D({s}, V 0

2 ), i.e.,
Prjprec(s̃21)(s) = s̃21, so we can say π̃2 is feasible. In a
similar way, we can conclude that π̃m is feasible for all
1 6 m 6 |V |. ¤

7 Improved Over-Approximate Slice

In Sections 2 and 3, we build an over-approximate
slice using the same method as [18] which leads to a
much coarser slice. The reason is that too much addi-
tional behavior may be introduced into the slice model.
For example, assume a large number of variables are
involved in the guard of event e, if var(guard(e)) 6⊆ V 0,
the guard of e is set to true. In this case, the logical con-
ditions related to V rel = {v|v ∈ var(guard(e))∧v ∈ V 0}
in guard(e) are neglected, which is responsible for ad-
ditional behavior.

In this section, we propose an improved approach
to construct a more precise over-approximate slice by
preserving the conditions related to V rel , i.e., only the
conditions related to var(guard(e))\V rel are ignored.
We first convert the guard of an event to the disjunc-
tive normal form. Let C(guard(e)) denote the clause
set of guard(e), c ∈ C(guard(e)) is the conjunction of
literals which is composed of atomic propositions or its
negations. Then all clauses of an event can be recalcu-
lated as follows.

c = ∧
p∈P (c)∧var(p)⊆V 0

p, (7)

where P (c) is the literal set of c. We get guard(e) as
follows.

guard(e) = ∨
c∈C(guard(e))∧P (c) 6=∅

c. (8)

An improved event set Evt0
imp is recalculated from

the result of (3) by (7) and (8). Then we get a more
precise over-approximate slice from K0 (built in Sec-
tion 3) by replacing Evt0 with Evt0

imp , denoted as
K0

imp = (S0
imp ,→0

imp , I0
imp , L0,AP0). K0

imp contains
less unnecessary behavior than K0 in most cases (at
least no more than K0 in the worst case). Further-
more, K0

imp simulates the original Kripke model K just

as K0 simulates K, which can be proved with a similar
method as Theorem 1. So lazy slicing can be performed
on K0

imp directly without loss of correctness, and the
verification cost of lazy slicing on K0

imp will be reduced
to a large degree.

Theorem 6. π belongs to Paths(K0
imp) implies π

belongs to Paths(K0).
Proof. Let π = s1s2s3 · · · be a path of K0

imp , and
e′′i leads to the transition from si to si+1, which is a
different version of ei of Evt , i > 1. Because K0

imp and
K0 have the same precision and initial state set, s1 also
belongs to I0. Let e′1 be the version of e1 in Evt0. If
var(guard(e1)) ⊆ Evt0, then guard(e′′1) = guard(e′1) =
guard(e1). So guard(e′1) can be satisfied on state s1,
and e′1 can lead to the transition from s1 to s2 on K0.
If var(guard(e1)) 6⊆ Evt0, then guard(e′1) is true. So
there still exists a transition from s1 to s2 via e′1 on
K0. Therefore, there always exists a transition from
s1 to s2 via e′1 on K0 corresponding to the transition
from s1 to s2 via e′′1 on K0

imp . For the same reason,
there exists a transition from s2 to s3 via e′2 on K0

corresponding to the transition from s1 to s2 via e′′1 on
K0

imp . So we can conclude that a path that is the same
as π can always be found on K0. ¤

The advantages of our improved over-approximate
slice can be shown using Example 1. Table 3 lists the
improved event set of Table 2.

Table 3. Improved Event Set

No. Guard Assignment

e′′1 x = n x = t
e′′2 x = t ∧ y = n x = c
e′′3 x = t ∧ y = t x = c
e′′5 x = c x = n
e′′6 y = n y = t
e′′7 y = t ∧ x = n y = c
e′′8 y = t ∧ x = t y = c
e′′10 y = c y = n

Fig.7 shows the state transition system of the im-
proved over-approximate slice K0

imp . Compared with

Fig.7. State transition system of K0
imp .
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Fig.2, the behavior of K0
imp is obviously less than K0

ϕ1
.

For example, there is no transition reaches state Scc in
Fig.7. Lazy slicing can prove K |= ϕ1 on K0

imp without
any refinement, i.e., the verification can be finished by
exploring only eight states on Fig.7.

8 Algorithm Analysis

In this section we first consider the correctness and
termination of lazy slicing, then give an analysis on the
savings achieved by our method.

8.1 Correctness

The correctness of our lazy slicing is expressed by
the following theorem.

Theorem 7. K = (S, T, I, L,AP) is the original
Kripke model, ϕ is a desired safety property, for any
terminating execution of LazySlicing (K,ϕ) we have:

1) If LazySlicing(K, ϕ) returns true, then we have
S ⊆ ∪s∈R[s], where R is a set storing the states ex-
plored by LazySlicing(K,ϕ);

2) Otherwise, LazySlicing(K,ϕ) returns a
counterexample π̃ = s̃11s̃12 · · · s̃1n1 s̃21s̃22 · · · s̃2n2 · · · s̃m1

s̃m2 · · · s̃mnm
, where s̃mnm

is the state violating ϕ, then
there exists at least one path π = s1s2 · · · sk in K such
that s1 ∈ [s̃11] and sk ∈ [s̃mnm

].
Let K0

i = (S0
i ,→0

i , I
0
i , L0

i ,AP0
i ) denote the i-th over-

approximate slice unfolded by LazySlicing(K, ϕ), where
1 6 i 6 n, n is the total number of over-approximate
slices unfolded by LazySlicing(K,ϕ).

In case that LazySlicing(K, ϕ) returns true. If the
exploration is finished on over-approximate slice K0

1 , we
have n = 1 and R = S0

1 . According to Corollary 3 the
following equation holds.

S ⊆
⋃

s∈S0
1

[s] =
⋃

s∈R

[s].

Otherwise, the rest states of K0
q which have not

been handled will be explored on the refined over-
approximate slice K0

2 after a spurious counterexample
is found on K0

1 . If the verification can be finished on
K0

2 , we have n = 2. But at this time R consists of
two parts: one is the states that have been explored on
K0

1 , denoted as S0
1e

; the other is the explored states on
K0

2 , denoted as S0
2c

. Let S0
2e

denote the states on K0
2

that are not included in R. According to Corollary 3
we have

S ⊆
⋃

s∈S0
2

[s] =
⋃

s∈S0
2e

[s] ∪
⋃

s∈S0
2c

[s].

Because states of S0
2c

are covered by states of S0
1e

,

we have ⋃

s∈S0
2c

[s] ⊆
⋃

s∈S0
1e

[s].

It follows that

S ⊆
⋃

s∈S0
2e

[s] ∪
⋃

s∈S0
2c

[s] ⊆
⋃

s∈S0
2e

[s] ∪
⋃

s∈S0
1e

[s] =
⋃

s∈R

[s].

Otherwise, namely the exploration is not finished
on K0

2 , LazySlicing(K, ϕ) will enter the third over-
approximate slice K0

3 . If it can be finished on K0
3 , then

R consists of S0
1e

, S0
2e

and S0
3e

(the states explored on
K0

3 ), and the unexplored states on K0
3 , denoted as S0

3c
,

are covered by states of S0
1e

and S0
2e

. According to
Corollary 3 we have

S ⊆
⋃

s∈S0
3

[s] =
⋃

s∈S0
3e

[s] ∪
⋃

s∈S0
3c

[s].

Because
⋃

s∈S0
3c

[s] ⊆
⋃

s∈S0
1e

[s] ∪
⋃

s∈S0
2e

[s],

it follows that

S ⊆
⋃

s∈S0
3e

[s] ∪
⋃

s∈S0
3c

[s]

⊆
⋃

s∈S0
3e

[s] ∪
⋃

s∈S0
1e

[s] ∪
⋃

s∈S0
2e

[s]

=
⋃

s∈R

[s].

If the exploration cannot terminate on K0
3 , then our

algorithm enters K0
4 , the exploration may be finished

on K0
4 or enters K0

5 and so on. But it will terminate on
the n-th over-approximate slice according to Theorem
4 in the worst case n = |V |. Finally, we can conclude by
induction that LazySlicing(K,ϕ) returns true implies

S ⊆
⋃

s∈R

[s].

If LazySlicing(K, ϕ) returns a counterexample, let it
be π̃ = s̃11s̃12 · · · s̃1n1 s̃21s̃22 · · · s̃2n2 · · · s̃m1s̃m2 · · · s̃mnm

,
then according to Theorem 5 we have the path fragment
s̃11s̃12 · · · s̃1n1 s̃21s̃22 · · · s̃2n2 · · · s̃m1 is feasible. Accord-
ing to Theorem 2 path fragment s̃m1s̃m2 · · · s̃mnm

is fea-
sible. So we can safely say π̃ is feasible, which means
there exists at least one path π = s1s2 · · · sk in K cor-
responding to π̃ such that s1 ∈ [s̃11] and sk ∈ [s̃mnm

].

8.2 Termination

In this paper we make an assumption that the state
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space handled by lazy slicing is finite. The following
theorem is the sufficient condition that ensures the ter-
mination of LazySlicing(K,ϕ).

Theorem 8. K = (S, T, I, L, A) is a finite Kripke
model, ϕ is the property of interest, LazySlicing(K,ϕ)
terminates.

Actually the variable set V of K is a finite
set, according to Theorem 4 the refinement of
LazySlicing(K,ϕ) iterates at most |V | − 1 times in the
worst case, which also is the reason why the path of lazy
slicing algorithm consists of at most |V | path fragments
with ascending precisions (Corollary 4). This means the
refinement iteration is terminable. In each iteration,
cover relations can deal with cycle path, which guaran-
tees the termination of each path of LazySlicing(K, ϕ).
So we conclude that LazySlicing(K, ϕ) terminates.

8.3 Savings and Cost

Compared to CEGAR-based slicing, LazySlicing(K,
ϕ) has achieved three savings.

First, if a spurious counterexample is found, the dead
end state suggests which variable should be added to
refine the slice model. Instead of building an entirely
new over-approximate slice, lazy slicing refines a local
slice by taking the feasible equivalent successors of the
feasible prefix of spurious counterexample as the initial
states. Refining only the unknown state space makes
lazy slicing be able to avoid the repetitive computation
of CEGAR-based slicing.

Second, since the refined local slice may contain
loops to the state checked before, cover relation is able
to identify the loop no matter whether this loop is be-
tween states with the same precision or not. This means
the work done before is utilized to prove the correctness
of the desired property. As we already know there is no
error state in the state space explored before.

Third, counterexamples found on an over-
approximate slice have to be validated. [18] and [19]
identify spurious counterexamples by concretizing the
whole counterexample on the original model, which is
time-consuming. However, the path of lazy slicing con-
sists of path fragments with ascending precisions, which
makes it possible to identify a spurious counterexample
by its last path fragment without lose of correctness
(according to Theorem 5). The cost of concretizing
the path fragments before the last path fragment is
reduced.

However, states explored by lazy slicing may have
different precisions. So we require an additional field to
mark the precision of a state. According to Theorem 4
we know there appear at most |V | different precisions
during a verification process. So the extra space cost is
only a mark that distinguishes |V | different precisions

for each state.

9 Experiments

We have implemented a model checking procedure
as a small prototype tool named LSVT (Lazy Slicing-
based Verification Tool). LSVT is implemented in Java
(JRE 1.6) and consists of five main components: a
specification parser which extracts variable set, event
set, initial conditions and the given property from
the specification; an over-approximate slicing proce-
dure which computes the over-approximate slice with a
given precision from the results of specification parser;
a satisfiability (SAT) solver for satisfiability checking; a
spurious counterexample decision procedure to identify
spurious counterexamples; and the lazy slicing explo-
ration procedure that performs verification according
to the results of SAT solver and spurious counterexam-
ple decision procedure. Though our specification parser
and SAT solver are not powerful enough for industrial
applications so far, they are sufficient to prove the ad-
vantages of lazy slicing compared with CEGAR-based
slicing.

The goal of our experimentation is twofold. First
we wish to evaluate the feasibility of our approach. In
addition, we wish to evaluate the relative performances
of lazy slicing compared with CEGAR-based slicing al-
gorithm. We have implemented a basic checking pro-
cedure (BC), an incremental slicing checking procedure
(ISC)[18] and a lazy slicing checking procedure (LSC) on
LSVT. Besides, an improved over-approximate slicing
procedure given in Section 7 has been implemented to
show the savings of verification on the improved model
compared with the one not improved. When LSC per-
forms verification on the improved model, we call it
LSCIS (LSC on the improved over-approximate slice
model, LSCIS). Our experiments were carried out on
a Linux machine with a Pentiumr Dual-Core E5200
processor and 2GB memory.

We performed three sets of experiments. The first
set experiments were carried out on our own model of
the Medical Insurance Audit system of Heilongjiang
Province. The others were performed on two bench-
marks of BEEM (BEnchmarks for explicit model check-
ers, http://anna.fi.muni.cz/models/): bridge puzzle
and peterson mutual exclusion algorithms.

In the first set of experiments, we built a model
of our Medical Insurance Audit system. The primary
function of the audit system is to discover the beha-
vior that violates the medical insurance policy of Hei-
longjiang province by data analysis, and the core busi-
ness of this system is the audit method system con-
structed from the medical insurance policy. The model
we built describes the payment and settlement link of
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the ordinary urban workers. The domains of variables,
such as payment standard, self-paid ratio, proportion
of reimbursement, age of workers and so on, were dis-
cretized by data abstraction. The state space of this
model has 12 294 reachable states. This experiment is
designed to verify the safety properties to ensure that
the audit system can discover illegal data as expected.
Table 4 summarizes the experimental results of six dif-
ferent properties which are chosen from 23 safety pro-
perties (described in propositional logic formula) used
in our experiment. There are four rows in the veri-
fication results of each property, where |R|max is the
largest size of R in the verification process, SatNum de-
notes the number the SAT solver is called, Cost denotes
the time cost of a verification process, and RefineNum
is the number of refinement. Columns BC, ISC, LSC
and LSCIS denote the basic checking procedure, the
incremental slicing checking procedure, the lazy slicing
checking procedure and the lazy slicing checking pro-
cedure running on our improved over-approximate slice
respectively. The last column shows the verification re-
sults of each property.

Table 4. Experimental Results on the Medical
Insurance Audit System

ID Parameter BC ISC LSC LSCIS Result

ϕ1 |R|max 49 7 7 2 False
SatNum 49 7 7 2
Cost (ms) 759 88 91 21
RefineNum 0 0 0 0

ϕ2 |R|max 663 139 89 53 False
SatNum 663 163 117 61
Cost (ms) 1 193 331 225 122
RefineNum 0 2 2 1

ϕ3 |R|max 1 622 103 66 26 False
SatNum 1 622 117 71 26
Cost (ms) 2 948 242 105 59
RefineNum 0 1 1 0

ϕ4 |R|max 12 294 80 69 69 True
SatNum 12 299 115 83 83
Cost (ms) 28 762 285 223 232
RefineNum 0 1 1 1

ϕ5 |R|max 12 294 240 197 101 True
SatNum 12 299 532 243 153
Cost (ms) 27 855 1 944 1 003 707
RefineNum 0 3 3 1

ϕ6 |R|max 12 294 514 349 261 True
SatNum 12 294 961 517 314
Cost (ms) 26 733 4 753 901 565
RefineNum 0 4 4 2

We first used BC procedure to perform a primitive
verification for the six safety properties on our medi-
cal insurance settlement model. Then ISC procedure
was applied to perform the incremental slicing verifi-
cations. As mentioned earlier, the advantage of ISC
is that it allows for much coarser slices yielding smaller
state spaces. The experimental results reveal the power

of the state space reduction possessed by incremental
slicing compared with BC procedure. However, ISC
reduces the state space at the cost of additional re-
finements. Though it is necessary for ISC to rule out
spurious counterexamples, it also will result in repeated
computing cost at the same time.

Compared to ISC procedure, the experiment results
confirm the correctness and the evident improvement
of the reduction capability of our lazy slicing. How-
ever, lazy slicing cannot always guarantee a remark-
able reduction of state space and computing cost. The
six properties include a variety of different situations,
which can help us observe the performance of lazy slic-
ing from different perspectives. Properties 1∼3 are not
satisfied by our testing model while properties 4∼6 are
satisfied by our model. LSC gives the same result as
ISC and BC, which is guaranteed by Theorem 7. We
notice the performance of LSC is roughly the same as
ISC in the situation where there is no refinement ite-
ration in a verification process (the experimental re-
sults of Property 1), and model checking is finished on
the first over-approximate slice in this situation. But
the first approximation is often too rough to verify the
given property, and refinement is inevitable in most
cases. According to the experimental results of Pro-
perties 2∼6, it follows that the more refinement iter-
ates, the higher performance LSC achieves. There are
two main causes of this situation. First, LSC avoids
the repeated computation cost only when refinement
happens. Second, the cost of spurious counterexam-
ple decision decreases remarkably in proportion to the
number of refinements. Another significant improve-
ment is LSCIS, namely, performing lazy slicing on our
improved over-approximate slice model, which actually
enhances the performance of LSC irrespective of refine-
ment according to experimental results (except in ex-
treme cases that the improved slice is the same as the
one not improved).

Bridge puzzle is a benchmark of BEEM about men
crossing a bridge. Four men have to cross a bridge at
night. The bridge is old and dilapidated and can hold
at most two people at a time. There are no railings,
and the men have only one flashlight. Any party who
crosses, either one or two men, must carry the flash-
light with them. The flashlight must be walked back
and forth; it cannot be thrown, etc. Each man walks at
a different speed. If two men cross together, they must
walk at the slower man’s pace. The problem is whether
they can get to the other side in a given time. We gene-
ralized this model to different number of men and time
limitation. Table 5 compares the run time performance
of lazy slicing and incremental slicing (a CEGAR-based
slicing algorithm) on bridge puzzle algorithm with dif-
ferent parameters. We checked six different properties
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on this model. In Column 1, N denotes the number of
men and M denotes the maximum time for crossing.
The last column provides the scale of the state space of
bridge puzzle with regard to N and M .

Table 5. Experimental Results on Bridge
Puzzle Algorihm

Parameters ISC LSC LSCIS |S|
N = 4 ϕ7 SatNum 28 23 17 3 186
M = 60 Cost (ms) 253 194 101
N = 6 ϕ8 SatNum 250 143 121
M = 140 Cost (ms) 485 375 298

ϕ9 SatNum 184 111 97 3 186
Cost(ms) 532 264 191

ϕ10 SatNum 393 206 101
Cost (ms) 1 641 807 462

N = 8 ϕ11 SatNum 1 823 786 564 96 923
M = 200 Cost (ms) 10 126 3 878 2 391

ϕ12 SatNum 4 703 1 689 1 069
Cost(ms) 33 110 12 465 8 398

In order to investigate the performance of lazy slicing
on larger examples, three groups of experiments were
carried out on a peterson mutual exclusion algorithm.
There are two or more processes reading and/or writ-
ing some shared data and the final result depends on
who runs precisely. Code sections containing race con-
ditions can be regarded as “critical”, because such code
can lead to inconsistent data. To avoid inconsistence in
critical sections, exclusive access to shared data must
be granted. This algorithm was also extended to sup-
ply a lager state space. Table 6 provides an overview
of the experimental results on six different properties.
Parameter N in the first column denotes the number
of processes, and E denotes the presence of an artificial
error.

Table 6. Experimental Results on Peterson
Mutual Exclusion Algorithm

Parameters ISC LSC LSCIS |S|
N = 3 ϕ13 SatNum 185 111 60 12 498

Cost (ms) 431 361 143
ϕ14 SatNum 379 298 227

Cost (ms) 1 043 891 715

N = 3 ϕ15 SatNum 6 523 2 787 802 124 704
E = 1 Cost (ms) 20 098 13 437 5 046

ϕ16 SatNum 10 011 2 270 736
Cost (ms) 35 477 11 459 6 101

N = 4 ϕ17 SatNum 56 245 13 841 9 028 1 119 560
Cost (ms) 238 378 76 229 59 257

ϕ18 SatNum 52 046 11 310 3 533
Cost (ms) 275 153 62 934 23 546

The performance difference of lazy slicing and incre-
mental slicing lies in the fact that lazy slicing conserves
the achievements that have been done by CEGAR-
based slicing before a spurious counterexample has been
found. Besides, our improved over-approximate slicing

method (in Section 7) is able to provide a more pre-
cise slice than incremental slicing, which explains why
LSCIS is better than LSC. Tables 5 and 6 also show
that the slice state space expanded by LSC (LSCIS)
grows obviously slower than the state space considered
by ISC according to the number of calls for SAT solver.
We also report the relative time difference between our
approach and incremental slicing in Fig.8.

Fig.8. Relative time improvement of LSC and LSCIS w.r.t. ISC.

In Fig.8, the x-axis corresponds to the number of
the properties in Tables 4∼6, and y-axis corresponds to
the relative time differences (ISC-LSC)/ISC×100 and
(ISC -LSCIS)/ISC×100). Fig.8 shows that the compu-
tation cost of lazy slicing (LSC) is notably lower than
that of incremental slicing, and this reduction ability is
strengthened by performing lazy slicing on an improved
over-approximate slice (LSCIS). Note that the improve-
ment of LSC and LSCIS is relative to the given property
and the dependent relationship between variables of the
model. Generally speaking, the fewer the number of
variables in the desired property, the stronger the abi-
lity to reduce the state space.

10 Conclusions

We propose lazy slicing to eliminate the repeated
computation cost of CEGAR-based slicing methods in
this paper. Our algorithm reuses the work done pre-
viously which avoids traversing the known correct state
space. By refining and exploring only a local slice, we
benefit from the previous runs because the state space
explored before is sufficient to prove the property of in-
terest. Spurious counterexample decision can also take
advantage of the path with ascending precisions of lazy
slicing. Our improved over-approximate slicing method
rules out additional behavior introduced by ISC which
enhances the performance of LSC significantly. Ex-
perimental results show that LSC procedure, especially
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LSCIS, scales much better to large systems compared
with CEGAR-based slicing without loss of correctness.

We have three main directions for future research.
First, as the object of LTL model checking is to find
an acceptable trace on the automata which is the pro-
duct of the given model and the desired property,
our ultimate goal is to apply LSCIS to LTL model
checking. Second, how to find a minimal variable set
to decrease the refinement iterations is a promising
work for us, and related efforts has been made in [19].
Third, counterexamples, especially long counterexam-
ples, which are utilized to locate error positions, are dif-
ficult to understand. Much work[26-28] has been done in
an effort to deal with this problem. How to understand
counterexamples, especially counterexamples with as-
cending precisions is still a challenging task.
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